#include<cmath>
using namespace std;
float Sqrt(float x);
float InvSqrt(float x);
{
system("color F0");
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(10);
//高速算法
double result1,result2;
result1=Sqrt(635);
//系统方法
double a=635;
result2=sqrt(a);
cout<<result1<<endl;
cout<<result2<<endl;
system("pause");
return 0;
}
//浮点数平方根高速算法
float Sqrt(float x)
{
float xhalf = 0.5f*x;
int i = *(int*)&x; // get bits for floating value
i = 0x5f375a86- (i>>1); // gives initial guess y0 迅速找出第一次比較接近的迭代结果
x = *(float*)&i; // convert bits BACK to float
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy 牛顿迭代法,次数越多越准确
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
return 1/x;
}
//实现平方根的倒数
float InvSqrt(float x)
{
float xhalf = 0.5f*x;
int i = *(int*)&x; // get bits for floating value
i = 0x5f375a86- (i>>1); // gives initial guess y0 迅速找出第一次比較接近的迭代结果
x = *(float*)&i; // convert bits BACK to float
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy 牛顿迭代法,次数越多越准确
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
return x;
}