NTT
首先发现操作的交换不影响答案
然后再打表,发现每项是一个组合数
然后NTT处理就行了
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 2e6 + 5, P = 998244353; namespace NTT { int power(int x, int t) { int ret = 1; for(; t; t >>= 1, x = 1LL * x * x % P) if(t & 1) ret = 1LL * ret * x % P; return ret; } void NTT(int *a, int len, int f) { int n = 1 << len; for(int i = 0; i < n; ++i) { int t = 0; for(int j = 0; j < len; ++j) if(i >> j & 1) t |= 1 << (len - j - 1); if(i < t) swap(a[i], a[t]); } for(int l = 2; l <= n; l <<= 1) { int m = l >> 1; int w = power(3, f == 1 ? (P - 1) / l : (P - 1) - (P - 1) / l); for(int i = 0; i < n; i += l) { int t = 1; for(int k = 0; k < m; ++k, t = 1LL * t * w % P) { int x = a[i + k], y = 1LL * t * a[i + m + k] % P; a[i + k] = (x + y) % P; a[i + k + m] = ((x - y) % P + P) % P; } } } if(f == -1) { int inv = power(n, P - 2); for(int i = 0; i < n; ++i) a[i] = 1LL * a[i] * inv % P; } } void mul(int *a, int *b, int *c, int len) { static int tmp[maxn]; NTT(a, len, 1); NTT(b, len, 1); int n = 1 << len; for(int i = 0; i < n; ++i) tmp[i] = 1LL * a[i] * b[i] % P; NTT(a, len, -1); NTT(b, len, -1); NTT(tmp, len, -1); for(int i = 0; i < n; ++i) c[i] = tmp[i]; } void mul(int *a, int *b, int len) { NTT(a, len, 1); NTT(b, len, 1); int n = 1 << len; for(int i = 0; i < n; ++i) a[i] = 1LL * a[i] * b[i] % P; NTT(a, len, -1); } } using namespace NTT; int n, m; int a[maxn], cnt[5], fac[maxn], facinv[maxn], inv[maxn], b[maxn]; int C(int n, int m) { if(n < m) return 0; return 1LL * fac[n] * facinv[m] % P * facinv[n - m] % P; } int main() { fac[0] = 1; inv[1] = 1; facinv[0] = 1; for(int i = 1; i < maxn; ++i) { fac[i] = 1LL * fac[i - 1] * i % P; if(i != 1) inv[i] = 1LL * (P - P / i) * inv[P % i] % P; facinv[i] = 1LL * facinv[i - 1] * inv[i] % P; } int T; scanf("%d", &T); while(T--) { memset(cnt, 0, sizeof(cnt)); scanf("%d%d", &n, &m); for(int i = 0; i < n; ++i) scanf("%d", &a[i]); while(m--) { int x; scanf("%d", &x); ++cnt[x]; } int t = 0; while(1 << t <= 2 * n) ++t; int m = 1 << t; for(int j = 1; j <= 3; ++j) if(cnt[j]) { for(int i = 0; i * j < n; ++i) b[i * j] = C(cnt[j] + i - 1, i); mul(a, b, t); for(int i = 0; i < m; ++i) b[i] = 0; for(int i = n; i < m; ++i) a[i] = 0; } ll ans = 0; for(int i = 0; i < n; ++i) ans ^= 1LL * (i + 1) * a[i]; printf("%lld\n", ans); } return 0; }