前言
背包问题可以说是一个老生常谈的问题,通常被用作面试题来考查面试者对动归的理解,我们经常说学算法,初学者最难理解的就是 “二归”,一个叫递归,另一个叫动归。
而背包问题属于特殊的一类动归问题,也就是按值动归,这篇文章主要讲解 0-1 背包 问题,如果读者能看明白,那么弄懂后续的 完全背包以及 多重背包 这两个知识点问题也是不大的。
通常背包这一类题目,题目大概就是给你一个容量或者大小固定的背包,然后要求你去用这个背包去装物品,一般来说这些物品都是大小固定的,但是题目对物品的限定不同,衍生出来多种背包问题。
0-1 背包 问题中,物品个数有且仅有一个;
完全背包 问题中的物品个数是无限的;
多重背包 问题中的针对不同的物品,个数不一样。
通常题目会要你求出背包能装的最大价值(每个物品都会有容量和价值),当然也会有不一样的问法,类似背包能否被装满,还有背包能装的最大容量是多少,多少种方式填满背包。
但是这些并不是背包问题的所有,还有 分组背包 问题,依赖背包 问题等等,因为考虑到这篇文章主要是针对面试,而不是竞赛,这些有机会再去介绍。
0-1 背包
题目描述
有 N 件物品和一个容量为 V 的背包。放入第 i 件物品耗费的费用是C[i] ,得到的价值是 W[i] 。求解将哪些物品装入背包可使价值总和最大。求出最大总价值。
题目分析
对于每一个物品可以考虑放,或者不放;如果当前是第 i 个物品,当前背包里面物品总价值是 Wcurrent,背包当前容量是 Vcurrent ,如果取这个物品,背包总价值会变成 Wcurrent + W[i] ,背包容量会变成 Vcurrent - C[i] 。
之前我们提到过,背包是属于按值动归,我们把背包划分为 1-V
个区间,也就是背包所有可能的大小,然后针对所有的物品,看看每个背包容量下能存放的最大价值,代码如下:
public static int zeroOnePack(int V, int[] C, int[] W) {
// 防止无效输入
if ((V <= 0) || (C.length != W.length)) {
return 0;
}
int n = C.length;
// dp[i][j]: 对于下标为 0~i 的物品,背包容量为 j 时的最大价值
int[][] dp = new int[n + 1][V + 1];
// 背包空的情况下,价值为 0
dp[0][0] = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= V; ++j) {
// 不选物品 i 的话,当前价值就是取到前一个物品的最大价值,也就是 dp[i - 1][j]
dp[i][j] = dp[i - 1][j];
// 如果选择物品 i 使得当前价值相对不选更大,那就选取 i,更新当前最大价值
if ((j >= C[i - 1]) && (dp[i][j] < dp[i - 1][j - C[i - 1]] + W[i - 1])) {
dp[i][j] = dp[i - 1][j - C[i - 1]] + W[i - 1];
}
}
}
// 返回,对于所有物品(0~N),背包容量为 V 时的最大价值
return dp[n][V];
}
代码优化
空间优化:
仅仅看代码就可以发现,其实 dp 数组当前行的计算只用到了前一行,我们可以利用 滚动数组 来优化,但是再仔细看下去的话,你就会发现其实还可以更优,当前行的遍历用到的值是上一行的前面列的值,如果我们第二层 for 循环遍历的时候倒着遍历的话,保证了前面更新的值不会被新计算的值覆盖掉,我们仅仅用一维数组就可以完美解决问题,代码如下:
public static int zeroOnePackOpt(int V, int[] C, int[] W) {
// 防止无效输入
if ((V <= 0) || (C.length != W.length)) {
return 0;
}
int n = C.length;
int[] dp = new int[V + 1];
// 背包空的情况下,价值为 0
dp[0] = 0;
for (int i = 0; i < n; ++i) {
for (int j = V; j >= C[i]; --j) {
dp[j] = Math.max(dp[j], dp[j - C[i]] + W[i]);
}
}
return dp[V];
}
极端情况优化:
当背包的 V 特别大的时候,对于每一个物品都去遍历一遍没有意义,通过阈值来进行优化,优化的同时可以考虑将数组从大到小排个序:
public static int zeroOnePackOpt(int V, int[] C, int[] W) {
// 防止无效输入
if ((V <= 0) || (C.length != W.length)) {
return 0;
}
int n = C.length;
int[] dp = new int[V + 1];
int bound, sum = 0, total = 0;
for (int i : C) {
total += i;
}
for (int i = 0; i < n; ++i) {
bound = Math.max(V - total + sum, C[i]);
sum += C[i];
for (int j = V; j >= bound; --j) {
dp[j] = Math.max(dp[j], dp[j - C[i]] + W[i]);
}
}
return dp[V];
}
总结
0-1 背包 基本概况就是这些,当然可能问题的问法会不一样,例如:
背包能不能被装满
解题思路就是将 int 数组换成 boolean 数组,也不用去考虑物品的价值来,直接看容量够不够,能不能装进背包即可
背包能装的最大容量
也很简单,解法和上面 “背包能不能被装满” 一样,只不过最后需要从后往前遍历 dp 数组,直到找到 true
多少种方式塞满背包
同样是不用考虑物品的价值,用 int 数组,但是里面记录的是个数,背包被填充的个数,也就是把这里的个数当作价值来看待,只不过 W[i] = 1。