LRU缓存:

LRU缓存利用了这样的一种思想。LRU是Least Recently Used 的缩写,翻译过来就是“最近最少使用”,也就是说,LRU缓存把最近最少使用的数据移除,让给最新读取的数据。而往往最常读取的,也是读取次数最多的,所以,利用LRU缓存,我们能够提高系统的performance.

实现:

要实现LRU缓存,我们首先要用到一个类 LinkedHashMap。 用这个类有两大好处:一是它本身已经实现了按照访问顺序的存储,也就是说,最近读取的会放在最前面,最最不常读取的会放在最后(当然,它也可以实现按照插入顺序存储)。第二,LinkedHashMap本身有一个方法用于判断是否需要移除最不常读取的数,但是,原始方法默认不需要移除(这是,LinkedHashMap相当于一个linkedlist),所以,我们需要override这样一个方法,使得当缓存里存放的数据个数超过规定个数后,就把最不常用的移除掉。LinkedHashMap的API写得很清楚,推荐大家可以先读一下。



1 import java.util.LinkedHashMap;  
2 import java.util.Collection;
3 import java.util.Map;
4 import java.util.ArrayList;
5
6 /**
7 * An LRU cache, based on <code>LinkedHashMap</code>.
8 *
9 * <p>
10 * This cache has a fixed maximum number of elements (<code>cacheSize</code>).
11 * If the cache is full and another entry is added, the LRU (least recently used) entry is dropped.
12 *
13 * <p>
14 * This class is thread-safe. All methods of this class are synchronized.
15 *
16 * <p>
17 * Author: Christian d'Heureuse, Inventec Informatik AG, Zurich, Switzerland<br>
18 * Multi-licensed: EPL / LGPL / GPL / AL / BSD.
19 */
20 public class LRUCache<K,V> {
21
22 private static final float hashTableLoadFactor = 0.75f;
23
24 private LinkedHashMap<K,V> map;
25 private int cacheSize;
26
27 /**
28 * Creates a new LRU cache.
29 * @param cacheSize the maximum number of entries that will be kept in this cache.
30 */
31 public LRUCache (int cacheSize) {
32 this.cacheSize = cacheSize;
33 int hashTableCapacity = (int)Math.ceil(cacheSize / hashTableLoadFactor) + 1;
34 map = new LinkedHashMap<K,V>(hashTableCapacity, hashTableLoadFactor, true) {
35 // (an anonymous inner class)
36 private static final long serialVersionUID = 1;
37 @Override protected boolean removeEldestEntry (Map.Entry<K,V> eldest) {
38 return size() > LRUCache.this.cacheSize; }}; }
39
40 /**
41 * Retrieves an entry from the cache.<br>
42 * The retrieved entry becomes the MRU (most recently used) entry.
43 * @param key the key whose associated value is to be returned.
44 * @return the value associated to this key, or null if no value with this key exists in the cache.
45 */
46 public synchronized V get (K key) {
47 return map.get(key); }
48
49 /**
50 * Adds an entry to this cache.
51 * The new entry becomes the MRU (most recently used) entry.
52 * If an entry with the specified key already exists in the cache, it is replaced by the new entry.
53 * If the cache is full, the LRU (least recently used) entry is removed from the cache.
54 * @param key the key with which the specified value is to be associated.
55 * @param value a value to be associated with the specified key.
56 */
57 public synchronized void put (K key, V value) {
58 map.put (key, value); }
59
60 /**
61 * Clears the cache.
62 */
63 public synchronized void clear() {
64 map.clear(); }
65
66 /**
67 * Returns the number of used entries in the cache.
68 * @return the number of entries currently in the cache.
69 */
70 public synchronized int usedEntries() {
71 return map.size(); }
72
73 /**
74 * Returns a <code>Collection</code> that contains a copy of all cache entries.
75 * @return a <code>Collection</code> with a copy of the cache content.
76 */
77 public synchronized Collection<Map.Entry<K,V>> getAll() {
78 return new ArrayList<Map.Entry<K,V>>(map.entrySet()); }
79
80 } // end class LRUCache
81 ------------------------------------------------------------------------------------------
82 // Test routine for the LRUCache class.
83 public static void main (String[] args) {
84 LRUCache<String,String> c = new LRUCache<String, String>(3);
85 c.put ("1", "one"); // 1
86 c.put ("2", "two"); // 2 1
87 c.put ("3", "three"); // 3 2 1
88 c.put ("4", "four"); // 4 3 2
89 if (c.get("2") == null) throw new Error(); // 2 4 3
90 c.put ("5", "five"); // 5 2 4
91 c.put ("4", "second four"); // 4 5 2
92 // Verify cache content.
93 if (c.usedEntries() != 3) throw new Error();
94 if (!c.get("4").equals("second four")) throw new Error();
95 if (!c.get("5").equals("five")) throw new Error();
96 if (!c.get("2").equals("two")) throw new Error();
97 // List cache content.
98 for (Map.Entry<String, String> e : c.getAll())
99 System.out.println (e.getKey() + " : " + e.getValue()); }


,作者使用的是双链表 + hashtable 的方式实现的。如果在面试题里考到如何实现LRU,考官一般会要求使用双链表 + hashtable 的方式。 所以,我把原文的部分内容摘抄如下:

 

双链表 + hashtable实现原理:

将Cache的所有位置都用双连表连接起来,当一个位置被命中之后,就将通过调整链表的指向,将该位置调整到链表头的位置,新加入的Cache直接加到链表头中。这样,在多次进行Cache操作后,最近被命中的,就会被向链表头方向移动,而没有命中的,而想链表后面移动,链表尾则表示最近最少使用的Cache。当需要替换内容时候,链表的最后位置就是最少被命中的位置,我们只需要淘汰链表最后的部分即可。



1 public class LRUCache {  
2
3 private int cacheSize;
4 private Hashtable<Object, Entry> nodes;//缓存容器
5 private int currentSize;
6 private Entry first;//链表头
7 private Entry last;//链表尾
8
9 public LRUCache(int i) {
10 currentSize = 0;
11 cacheSize = i;
12 nodes = new Hashtable<Object, Entry>(i);//缓存容器
13 }
14
15 /**
16 * 获取缓存中对象,并把它放在最前面
17 */
18 public Entry get(Object key) {
19 Entry node = nodes.get(key);
20 if (node != null) {
21 moveToHead(node);
22 return node;
23 } else {
24 return null;
25 }
26 }
27
28 /**
29 * 添加 entry到hashtable, 并把entry
30 */
31 public void put(Object key, Object value) {
32 //先查看hashtable是否存在该entry, 如果存在,则只更新其value
33 Entry node = nodes.get(key);
34
35 if (node == null) {
36 //缓存容器是否已经超过大小.
37 if (currentSize >= cacheSize) {
38 nodes.remove(last.key);
39 removeLast();
40 } else {
41 currentSize++;
42 }
43 node = new Entry();
44 }
45 node.value = value;
46 //将最新使用的节点放到链表头,表示最新使用的.
47 moveToHead(node);
48 nodes.put(key, node);
49 }
50
51 /**
52 * 将entry删除, 注意:删除操作只有在cache满了才会被执行
53 */
54 public void remove(Object key) {
55 Entry node = nodes.get(key);
56 //在链表中删除
57 if (node != null) {
58 if (node.prev != null) {
59 node.prev.next = node.next;
60 }
61 if (node.next != null) {
62 node.next.prev = node.prev;
63 }
64 if (last == node)
65 last = node.prev;
66 if (first == node)
67 first = node.next;
68 }
69 //在hashtable中删除
70 nodes.remove(key);
71 }
72
73 /**
74 * 删除链表尾部节点,即使用最后 使用的entry
75 */
76 private void removeLast() {
77 //链表尾不为空,则将链表尾指向null. 删除连表尾(删除最少使用的缓存对象)
78 if (last != null) {
79 if (last.prev != null)
80 last.prev.next = null;
81 else
82 first = null;
83 last = last.prev;
84 }
85 }
86
87 /**
88 * 移动到链表头,表示这个节点是最新使用过的
89 */
90 private void moveToHead(Entry node) {
91 if (node == first)
92 return;
93 if (node.prev != null)
94 node.prev.next = node.next;
95 if (node.next != null)
96 node.next.prev = node.prev;
97 if (last == node)
98 last = node.prev;
99 if (first != null) {
100 node.next = first;
101 first.prev = node;
102 }
103 first = node;
104 node.prev = null;
105 if (last == null)
106 last = first;
107 }
108 /*
109 * 清空缓存
110 */
111 public void clear() {
112 first = null;
113 last = null;
114 currentSize = 0;
115 }
116
117 }
118
119 class Entry {
120 Entry prev;//前一节点
121 Entry next;//后一节点
122 Object value;//值
123 Object key;//键
124 }