题目链接:​​https://vjudge.net/problem/HDU-4565​

 

So Easy!

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5525    Accepted Submission(s): 1841



Problem Description


  A sequence Sn is defined as:

HDU4565 So Easy!  —— 共轭构造、二阶递推数列、矩阵快速幂_i++

Where a, b, n, m are positive integers.┌x┐is the ceil of x. For example, ┌3.14┐=4. You are to calculate Sn.

  You, a top coder, say: So easy! 


 


Input


  There are several test cases, each test case in one line contains four positive integers: a, b, n, m. Where 0< a, m < 215, (a-1)2< b < a2, 0 < b, n < 231.The input will finish with the end of file.


 


 


Output


  For each the case, output an integer Sn.


 


 


Sample Input



2 3 1 20132 3 2 2013 2 2 1 2013


 


 


Sample Output



414 4


 


 


Source


​2013 ACM-ICPC长沙赛区全国邀请赛——题目重现​


 


 


Recommend


zhoujiaqi2010


 

 

题解:

1.因为:0< a,(a-1)2< b < a2,。当a>=1时, a-1<根号b<a,那么 0<(a-根号b)<1;当0<a<1时, 1-a<根号b<a,那么 那么 0<(a-根号b)<2*a-1<1。综上:0<(a-根号b)<1。所以0<(a-根号b)^n<1

2.这里假设b = 根号b,以方便描述。根据上述结论,那么可得:[(a+b)^n] = [(a+b)^n + (a-b)^n] = (a+b)^n + (a-b)^n 。

解释:

2.1 因为a-1<b<1,所以b必定是浮点数,那么(a+b)^n 也必定是浮点数,此时,再加上个大于0小于1的浮点数(a-b)^n,那么 [(a+b)^n + (a-b)^n] 有可能等于[(a+b)^n] ,也有可能等于[(a+b)^n] +1,这就要取决(a+b)^n的小数部分与(a-b)^n的小数部分之和是否大于1。

2.2 此时,就要将(a+b)^n+(a-b)^n展开进行分析。展开后可知,当b的指数为奇数时,正负抵消;当b的指数为偶数时,b^2k 为一个整数。综上:(a+b)^n+(a-b)^n为一个整数,即表明(a+b)^n的小数部分与(a-b)^n的小数部分之和刚好等于1,所以[(a+b)^n] = [(a+b)^n + (a-b)^n] = (a+b)^n + (a-b)^n 。

3.根据上述分析,问题转化为求:S[n] = (a+b)^n + (a-b)^n 。而这个式子可以看成是二阶齐次递推式的通项公式,可以根据通项公式反推回递推式,然后构造矩阵进行求解。具体如下:

HDU4565 So Easy!  —— 共轭构造、二阶递推数列、矩阵快速幂_.net_02

HDU4565 So Easy!  —— 共轭构造、二阶递推数列、矩阵快速幂_浮点数_03

以上来自:javascript:void(0)

 

 

代码如下:


HDU4565 So Easy!  —— 共轭构造、二阶递推数列、矩阵快速幂_#include_04HDU4565 So Easy!  —— 共轭构造、二阶递推数列、矩阵快速幂_递推_05


1 #include <iostream>
2 #include <cstdio>
3 #include <cstring>
4 #include <algorithm>
5 #include <vector>
6 #include <cmath>
7 #include <queue>
8 #include <stack>
9 #include <map>
10 #include <string>
11 #include <set>
12 using namespace std;
13 typedef long long LL;
14 const int INF = 2e9;
15 const LL LNF = 9e18;
16 //const int MOD = 1e9+7;
17 const int MAXN = 1e6+100;
18
19 int MOD;
20 const int Size = 2;
21 struct MA
22 {
23 LL mat[Size][Size];
24 void init()
25 {
26 for(int i = 0; i<Size; i++)
27 for(int j = 0; j<Size; j++)
28 mat[i][j] = (i==j);
29 }
30 };
31
32 MA mul(MA x, MA y)
33 {
34 MA ret;
35 memset(ret.mat, 0, sizeof(ret.mat));
36 for(int i = 0; i<Size; i++)
37 for(int j = 0; j<Size; j++)
38 for(int k = 0; k<Size; k++)
39 ret.mat[i][j] += 1LL*x.mat[i][k]*y.mat[k][j]%MOD, ret.mat[i][j] = (ret.mat[i][j]%MOD+MOD)%MOD;
40 return ret;
41 }
42
43 MA qpow(MA x, LL y)
44 {
45 MA s;
46 s.init();
47 while(y)
48 {
49 if(y&1) s = mul(s, x);
50 x = mul(x, x);
51 y >>= 1;
52 }
53 return s;
54 }
55
56
57 int main()
58 {
59 LL a, b, n, m, f[2];
60 while(scanf("%lld%lld%lld%lld", &a,&b,&n,&m)!=EOF)
61 {
62 MOD = (int)m;
63 f[0] = 2; f[1] = 2*a;
64 if(n<=1)
65 {
66 printf("%lld\n", f[n]%MOD);
67 continue;
68 }
69
70 MA s;
71 memset(s.mat, 0, sizeof(s.mat));
72 s.mat[0][0] = 2*a; s.mat[0][1] = b-a*a;
73 s.mat[1][0] = 1; s.mat[1][1] = 0;
74
75 s = qpow(s, n-1);
76 LL ans = (1LL*s.mat[0][0]*f[1]%MOD+1LL*s.mat[0][1]*f[0]%MOD+2*MOD)%MOD;
77 printf("%lld\n", ans);
78 }
79 }

View Code