DP书上给出的定义:将对象组合成树形结构以表示“部分-整体”的层次结构。组合使得用户对单个对象和组合对象的使用具有一致性。注意两个字“树形”。这种树形结构在现实生活中随处可见,比如一个集团公司,它有一个母公司,下设很多家子公司。不管是母公司还是子公司,都有各自直属的财务部、人力资源部、销售部等。对于母公司来说,不论是子公司,还是直属的财务部、人力资源部,都是它的部门。整个公司的部门拓扑图就是一个树形结构。

      下面给出组合模式的UML图。从图中可以看到,FinanceDepartment、HRDepartment两个类作为叶结点,因此没有定义添加函数。而ConcreteCompany类可以作为中间结点,所以可以有添加函数。那么怎么添加呢?这个类中定义了一个链表,用来放添加的元素。

       相应的代码实现为:

class Company  
{
public:
Company(string name) { m_name = name; }
virtual ~Company(){}
virtual void Add(Company *pCom){}
virtual void Show(int depth) {}
protected:
string m_name;
};
//具体公司
class ConcreteCompany : public Company
{
public:
ConcreteCompany(string name): Company(name) {}
virtual ~ConcreteCompany() {}
void Add(Company *pCom) { m_listCompany.push_back(pCom); } //位于树的中间,可以增加子树
void Show(int depth)
{
for(int i = 0;i < depth; i++)
cout<<"-";
cout<<m_name<<endl;
list<Company *>::iterator iter=m_listCompany.begin();
for(; iter != m_listCompany.end(); iter++) //显示下层结点
(*iter)->Show(depth + 2);
}
private:
list<Company *> m_listCompany;
};
//具体的部门,财务部
class FinanceDepartment : public Company
{
public:
FinanceDepartment(string name):Company(name){}
virtual ~FinanceDepartment() {}
virtual void Show(int depth) //只需显示,无限添加函数,因为已是叶结点
{
for(int i = 0; i < depth; i++)
cout<<"-";
cout<<m_name<<endl;
}
};
//具体的部门,人力资源部
class HRDepartment :public Company
{
public:
HRDepartment(string name):Company(name){}
virtual ~HRDepartment() {}
virtual void Show(int depth) //只需显示,无限添加函数,因为已是叶结点
{
for(int i = 0; i < depth; i++)
cout<<"-";
cout<<m_name<<endl;
}
};

int main()
{
Company *root = new ConcreteCompany("总公司");
Company *leaf1=new FinanceDepartment("财务部");
Company *leaf2=new HRDepartment("人力资源部");
root->Add(leaf1);
root->Add(leaf2);

//分公司A
Company *mid1 = new ConcreteCompany("分公司A");
Company *leaf3=new FinanceDepartment("财务部");
Company *leaf4=new HRDepartment("人力资源部");
mid1->Add(leaf3);
mid1->Add(leaf4);
root->Add(mid1);
//分公司B
Company *mid2=new ConcreteCompany("分公司B");
FinanceDepartment *leaf5=new FinanceDepartment("财务部");
HRDepartment *leaf6=new HRDepartment("人力资源部");
mid2->Add(leaf5);
mid2->Add(leaf6);
root->Add(mid2);
root->Show(0);

delete leaf1; delete leaf2;
delete leaf3; delete leaf4;
delete leaf5; delete leaf6;
delete mid1; delete mid2;
delete root;
return 0;
}


        上面的实现方式有缺点,就是内存的释放不好,需要客户自己动手,非常不方便。有待改进,比较好的做法是让ConcreteCompany类来释放。因为所有的指针都是存在ConcreteCompany类的链表中。C++的麻烦,没有垃圾回收机制。


什么是组合模式?

在GOF的《设计模式:可复用面向对象软件的基础》一书中对组合模式是这样说的:将对象组合成树形结构以表示“部分-整体”的层次结构。组合(Composite)模式使得用户对单个对象和组合对象的使用具有一致性。

组合模式(Composite)将小对象组合成树形结构,使用户操作组合对象如同操作一个单个对象。组合模式定义了“部分-整体”的层次结构,基本对象可以被组合成更大的对象,而且这种操作是可重复的,不断重复下去就可以得到一个非常大的组合对象,但这些组合对象与基本对象拥有相同的接口,因而组合是透明的,用法完全一致。

我们这样来简单的理解组合模式,组合模式就是把一些现有的对象或者元素,经过组合后组成新的对象,新的对象提供内部方法,可以让我们很方便的完成这些元素或者内部对象的访问和操作。我们也可以把组合对象理解成一个容器,容器提供各种访问其内部对象或者元素的API,我们只需要使用这些方法就可以操作它了。

Component:


  1. 为组合中的对象声明接口;
  2. 在适当的情况下,实现所有类共有接口的缺省行为;
  3. 声明一个接口用于访问和管理Component的子组件。

Leaf:


  1. 在组合中表示叶节点对象,叶节点没有子节点;
  2. 在组合中定义叶节点的行为。

Composite:


  1. 定义有子部件的那些部件的行为;
  2. 存储子部件。

Client:

通过Component接口操作组合部件的对象。

/*
** FileName : CompositePatternDemo
** Author : Jelly Young
** Date : 2013/12/09
** Description : More information, please go to http://www.jellythink.com
*/
#include <iostream>
#include <string>
#include <vector>
using namespace std;
// 抽象的部件类描述将来所有部件共有的行为
class Component
{
public:
Component(string name) : m_strCompname(name){}
virtual ~Component(){}
virtual void Operation() = 0;
virtual void Add(Component *) = 0;
virtual void Remove(Component *) = 0;
virtual Component *GetChild(int) = 0;
virtual string GetName()
{
return m_strCompname;
}
virtual void Print() = 0;
protected:
string m_strCompname;
};
class Leaf : public Component
{
public:
Leaf(string name) : Component(name)
{}
void Operation()
{
cout<<"I'm "<<m_strCompname<<endl;
}
void Add(Component *pComponent){}
void Remove(Component *pComponent){}
Component *GetChild(int index)
{
return NULL;
}
void Print(){}
};
class Composite : public Component
{
public:
Composite(string name) : Component(name)
{}
~Composite()
{
vector<Component *>::iterator it = m_vecComp.begin();
while (it != m_vecComp.end())
{
if (*it != NULL)
{
cout<<"----delete "<<(*it)->GetName()<<"----"<<endl;
delete *it;
*it = NULL;
}
m_vecComp.erase(it);
it = m_vecComp.begin();
}
}
void Operation()
{
cout<<"I'm "<<m_strCompname<<endl;
}
void Add(Component *pComponent)
{
m_vecComp.push_back(pComponent);
}
void Remove(Component *pComponent)
{
for (vector<Component *>::iterator it = m_vecComp.begin(); it != m_vecComp.end(); ++it)
{
if ((*it)->GetName() == pComponent->GetName())
{
if (*it != NULL)
{
delete *it;
*it = NULL;
}
m_vecComp.erase(it);
break;
}
}
}
Component *GetChild(int index)
{
if (index > m_vecComp.size())
{
return NULL;
}
return m_vecComp[index - 1];
}
void Print()
{
for (vector<Component *>::iterator it = m_vecComp.begin(); it != m_vecComp.end(); ++it)
{
cout<<(*it)->GetName()<<endl;
}
}
private:
vector<Component *> m_vecComp;
};
int main(int argc, char *argv[])
{
Component *pNode = new Composite("Beijing Head Office");
Component *pNodeHr = new Leaf("Beijing Human Resources Department");
Component *pSubNodeSh = new Composite("Shanghai Branch");
Component *pSubNodeCd = new Composite("Chengdu Branch");
Component *pSubNodeBt = new Composite("Baotou Branch");
pNode->Add(pNodeHr);
pNode->Add(pSubNodeSh);
pNode->Add(pSubNodeCd);
pNode->Add(pSubNodeBt);
pNode->Print();
Component *pSubNodeShHr = new Leaf("Shanghai Human Resources Department");
Component *pSubNodeShCg = new Leaf("Shanghai Purchasing Department");
Component *pSubNodeShXs = new Leaf("Shanghai Sales department");
Component *pSubNodeShZb = new Leaf("Shanghai Quality supervision Department");
pSubNodeSh->Add(pSubNodeShHr);
pSubNodeSh->Add(pSubNodeShCg);
pSubNodeSh->Add(pSubNodeShXs);
pSubNodeSh->Add(pSubNodeShZb);
pNode->Print();
// 公司不景气,需要关闭上海质量监督部门
pSubNodeSh->Remove(pSubNodeShZb);
if (pNode != NULL)
{
delete pNode;
pNode = NULL;
}
return 0;
}


实现要点


  1. Composite的关键之一在于一个抽象类,它既可以代表Leaf,又可以代表Composite;所以在实际实现时,应该最大化Component接口,Component类应为Leaf和Composite类尽可能多定义一些公共操作。Component类通常为这些操作提供缺省的实现,而Leaf和Composite子类可以对它们进行重定义;
  2. Component是否应该实现一个Component列表,在上面的代码中,我是在Composite中维护的列表,由于在Leaf中,不可能存在子Composite,所以在Composite中维护了一个Component列表,这样就减少了内存的浪费;
  3. 内存的释放;由于存在树形结构,当父节点都被销毁时,所有的子节点也必须被销毁,所以,我是在析构函数中对维护的Component列表进行统一销毁,这样就可以免去客户端频繁销毁子节点的困扰;
  4. 由于在Component接口提供了最大化的接口定义,导致一些操作对于Leaf节点来说并不适用,比如:Leaf节点并不能进行Add和Remove操作,由于Composite模式屏蔽了部分与整体的区别,为了防止客户对Leaf进行非法的Add和Remove操作,所以,在实际开发过程中,进行Add和Remove操作时,需要进行对应的判断,判断当前节点是否为Composite。

组合模式的优点

将对象组合成树形结构以表示“部分-整体”的层次结构。组合模式使得用户对单个对象和组合对象的使用具有一致性。

使用场景


  1. 你想表示对象的部分-整体层次结构;
  2. 希望用户忽略组合对象与单个对象的不同,用户将统一地使用组合结构中的所有对象。

引用大话设计模式的片段:“当发现需求中是体现部分与整体层次结构时,以及你希望用户可以忽略组合对象与单个对象的不同,统一地使用组合结构中的所有对象时,就应该考虑组合模式了。”