NumPy为何如此重要?
实际上Python本身含有列表(list)和数组(array),但对于大数据来说,这些结构有很多不足。因列表的元素可以是任何对象,因此列表中所保存的是对象的指针。这样为了保存一个简单的[1,2,3],都需要有3个指针和3个整数对象。


对于数值运算来说,这种结构显然比较浪费内存和CPU计算时间。至于array对象,它直接保存数值,和C语言的一维数组比较类似。但是由于它不支持多维,也没有各种运算函数,因此也不适合做数值运算。


NumPy(Numerical Python 的简称)的诞生弥补了这些不足,它提供了两种基本的对象:ndarray(N-dimensional array object)和 ufunc(universal function object)。ndarray是存储单一数据类型的多维数组,而ufunc则是能够对数组进行处理的函数。


NumPy的主要特点:


  • ndarray,快速,节省空间的多维数组,提供数组化的算术运算和高级的广播功能。

  • 使用标准数学函数对整个数组的数据进行快速运算,而不需要编写循环。

  • 读取/写入磁盘上的阵列数据和操作存储器映像文件的工具。

  • 线性代数,随机数生成,以及傅里叶变换的能力。

  • 集成C、C++、Fortran代码的工具。


在使用 NumPy 之前,需要先导入该模块:


import numpy as np



01 生成ndarray的几种方式


NumPy封装了一个新的数据类型ndarray,一个多维数组对象,该对象封装了许多常用的数学运算函数,方便我们进行数据处理以及数据分析,那么如何生成ndarray呢?这里我们介绍生成ndarray的几种方式,如从已有数据中创建;利用random创建;创建特殊多维数组;使用arange函数等。


1. 从已有数据中创建


直接对python的基础数据类型(如列表、元组等)进行转换来生成ndarray。


(1)将列表转换成ndarray


import numpy as np
list1 = [3.14,2.17,0,1,2]
nd1 = np.array(list1)
print(nd1)
print(type(nd1))


打印结果:


[ 3.14  2.17  0.    1.    2.  ]
<class 'numpy.ndarray'>


(2)嵌套列表可以转换成多维ndarray


import numpy as np
list2 = [[3.14,2.17,0,1,2],[1,2,3,4,5]]
nd2 = np.array(list2)
print(nd2)
print(type(nd2))


打印结果:


[[ 3.14  2.17  0.    1.    2.  ]
 [ 1.    2.    3.    4.    5.  ]]
<class 'numpy.ndarray'>


如果把(1)和(2)中的列表换成元组也同样适合。


2. 利用random模块生成ndarray


在深度学习中,我们经常需要对一些变量进行初始化,适当的初始化能提高模型的性能。通常我们用随机数生成模块random来生成,当然random模块又分为多种函数:


  • random生成0到1之间的随机数;

  • uniform生成均匀分布随机数;

  • randn生成标准正态的随机数;

  • normal生成正态分布;

  • shuffle随机打乱顺序;

  • seed设置随机数种子等。


下面我们列举几个简单示例。


import numpy as np

nd5 = np.random.random([3,3])
print(nd5)
print(type(nd5))


打印结果:


[[ 0.88900951  0.47818541  0.91813526]
 [ 0.48329167  0.63730656  0.14301479]
 [ 0.9843789   0.99257093  0.24003961]]
<class 'numpy.ndarray'>


生成一个随机种子,对生成的随机数打乱。


import numpy as np

np.random.seed(123)
nd5_1 = np.random.randn(2,3)
print(nd5_1)
np.random.shuffle(nd5_1)
print("随机打乱后数据")
print(nd5_1)
print(type(nd5_1))


打印结果:


[[-1.0856306   0.99734545  0.2829785 ]
 [-1.50629471 -0.57860025  1.65143654]]


随机打乱后数据为:


[[-1.50629471 -0.57860025  1.65143654]
 [-1.0856306   0.99734545  0.2829785 ]]
<class 'numpy.ndarray'>


3. 创建特定形状的多维数组


数据初始化时,有时需要生成一些特殊矩阵,如0或1的数组或矩阵,这时我们可以利用np.zeros、np.ones、np.diag来实现,下面我们通过几个示例来说明。


import numpy as np

#生成全是0的3x3矩阵
nd6 = np.zeros([3,3])
#生成全是1的3x3矩阵
nd7 = np.ones([3,3])
#生成3阶的单位矩阵
nd8= np.eye(3)
#生成3阶对角矩阵
print (np.diag([123]))


我们还可以把生成的数据保存到磁盘,然后从磁盘读取。


import numpy as np
nd9 = np.random.random([5,5])
np.savetxt(X=nd9,fname='./test2.txt')
nd10 = np.loadtxt('./test2.txt')


4. 利用arange函数


arange是numpy模块中的函数,其格式为:arange([start,] stop[, step,], dtype=None)。根据start与stop指定的范围,以及step设定的步长,生成一个 ndarray,其中start默认为0,步长step可为小数。


import numpy as np

print(np.arange(10))
print(np.arange(0,10))
print(np.arange(14,0.5))
print(np.arange(9-1-1))



02 存取元素


上节我们介绍了生成ndarray的几种方法,数据生成后,如何读取我们需要的数据?这节我们介绍几种读取数据的方法。


import numpy as np
np.random.seed(2018)
nd11 = np.random.random([10])
#获取指定位置的数据,获取第4个元素
nd11[3]
#截取一段数据
nd11[3:6]
#截取固定间隔数据
nd11[1:6:2]
#倒序取数
nd11[::-2]
#截取一个多维数组的一个区域内数据
nd12=np.arange(25).reshape([5,5])
nd12[1:3,1:3]
#截取一个多维数组中,数值在一个值域之内的数据
nd12[(nd12>3)&(nd12<10)]
#截取多维数组中,指定的行,如读取第2,3行
nd12[[1,2]]  #或nd12[1:3,:]
##截取多维数组中,指定的列,如读取第2,3列
nd12[:,1:3]


如果你对上面这些获取方式还不是很清楚,没关系,下面我们通过图形的方式说明如何获取多维数组中的元素,如图1-1所示,左边为表达式,右边为对应获取元素。


Python必备基础:这些NumPy的神操作你都掌握了吗?_java

▲图1-1 获取多维数组中的元素


获取数组中的部分元素除通过指定索引标签外,还可以使用一些函数来实现,如通过random.choice函数从指定的样本中进行随机抽取数据。


import numpy as np
from numpy import random as nr

a=np.arange(1,25,dtype=float)
c1=nr.choice(a,size=(3,4))  #size指定输出数组形状
c2=nr.choice(a,size=(3,4),replace=False)  #replace缺省为True,即可重复抽取
#下式中参数p指定每个元素对应的抽取概率,默认为每个元素被抽取的概率相同
c3=nr.choice(a,size=(3,4),p=a / np.sum(a))
 print("随机可重复抽取")
print(c1)
print("随机但不重复抽取")
print(c2)
print("随机但按制度概率抽取")
print(c3)


打印结果:


随机可重复抽取
[[  7.  22.  19.  21.]
 [  7.   5.   5.   5.]
 [  7.   9.  22.  12.]]
随机但不重复抽取
[[ 21.   9.  15.   4.]
 [ 23.   2.   3.   7.]
 [ 13.   5.   6.   1.]]
随机但按制度概率抽取
[[ 15.  19.  24.   8.]
 [  5.  22.   5.  14.]
 [  3.  22.  13.  17.]]



03 矩阵操作


深度学习中经常涉及多维数组或矩阵的运算,正好NumPy模块提供了许多相关的计算方法,下面介绍一些常用的方法。


import numpy as np

nd14=np.arange(9).reshape([3,3])

#矩阵转置
np.transpose(nd14)

#矩阵乘法运算
a=np.arange(12).reshape([3,4])
b=np.arange(8).reshape([4,2])
a.dot(b)

#求矩阵的迹
a.trace()
#计算矩阵行列式
np.linalg.det(nd14)

#计算逆矩阵
c=np.random.random([3,3])
np.linalg.solve(c,np.eye(3))


上面介绍的几种方法是numpy.linalg模块中的函数,numpy.linalg模块中的函数是满足行业标准级的Fortran库。


numpy.linalg中常用函数:


  • diag:以一维数组方式返回方阵的对角线元素

  • dot矩阵乘法

  • trace求迹,即计算对角线元素的和

  • det计算矩阵列式

  • eig计算方阵的本征值和本征向量

  • inv计算方阵的逆

  • qr计算qr分解

  • svd计算奇异值分解svd

  • solve解线性方程组Ax = b,其中A为方阵

  • lstsq计算Ax=b的最小二乘解



04 数据合并与展平


在机器学习或深度学习中,会经常遇到需要把多个向量或矩阵按某轴方向进行合并的情况,也会遇到展平的情况,如在卷积或循环神经网络中,在全连接层之前,需要把矩阵展平。这节介绍几种数据合并和展平的方法。


1. 合并一维数组


import numpy as np
a=np.array([1,2,3])
b=np.array([4,5,6])
c=np.append(a,b)
print(c)
#或利用concatenate
d=np.concatenate([a,b])
print(d)


打印结果:


[1 2 3 4 5 6]
[1 2 3 4 5 6]


2. 多维数组的合并


import numpy as np
a=np.arange(4).reshape(2,2)
b=np.arange(4).reshape(2,2)
#按行合并
c=np.append(a,b,axis=0)
print(c)
print("合并后数据维度",c.shape)
#按列合并
d=np.append(a,b,axis=1)
print("按列合并结果:")
print(d)
print("合并后数据维度",d.shape)


打印结果:


[[0 1]
 [2 3]
 [0 1]
 [2 3]]
合并后数据维度 (4, 2)
按列合并结果:
[[0 1 0 1]
 [2 3 2 3]]
合并后数据维度 (2, 4) 


3. 矩阵展平


import numpy as np
nd15=np.arange(6).reshape(2,-1)
print(nd15)
#按照列优先,展平。
print("按列优先,展平")
print(nd15.ravel('F'))
#按照行优先,展平。
print("按行优先,展平")
print(nd15.ravel())


打印结果:


[[0 1 2]
 [3 4 5]]
按列优先,展平
[0 3 1 4 2 5]
按行优先,展平
[0 1 2 3 4 5]



05 通用函数


NumPy提供了两种基本的对象,即ndarray和ufunc对象。前面我们对ndarray做了简单介绍,本节将介绍它的另一个对象ufunc。


ufunc(通用函数)是universal function的缩写,它是一种能对数组的每个元素进行操作的函数。许多ufunc函数都是在C语言级别实现的,因此它们的计算速度非常快。


此外,功能比math模块中的函数更灵活。math模块的输入一般是标量,但NumPy中的函数可以是向量或矩阵,而利用向量或矩阵可以避免循环语句,这点在机器学习、深度学习中经常使用。以下为NumPy中的常用几个通用函数:


  • sqrt:计算序列化数据的平方根

  • sin,cos三角函数

  • abs计算序列化数据的绝对值

  • dot矩阵运算

  • log,log10,log2对数函数

  • exp指数函数

  • cumsum,cumproduct累计求和,求积

  • sum对一个序列化数据进行求和

  • mean计算均值

  • median计算中位数

  • std计算标准差

  • var计算方差

  • corrcoef计算相关系数


1. 使用math与numpy函数性能比较


import time
import math
import numpy as np
x = [i * 0.001 for i in np.arange(1000000)]
start = time.clock()
for i, t in enumerate(x):
    x[i] = math.sin(t)
print ("math.sin:", time.clock() - start )

x = [i * 0.001 for i in np.arange(1000000)]
x = np.array(x)
start = time.clock()
np.sin(x)
print ("numpy.sin:", time.clock() - start )


打印结果:


math.sin: 0.5169950000000005
numpy.sin: 0.05381199999999886


由此可见,numpy.sin比math.sin快近10倍。


2. 使用循环与向量运算比较


充分使用Python的NumPy库中的内建函数(built-in function),实现计算的向量化,可大大提高运行速度。NumPy库中的内建函数使用了SIMD指令。例如下面所示在Python中使用向量化要比使用循环计算速度快得多。


import time
import numpy as np

x1 = np.random.rand(1000000)
x2 = np.random.rand(1000000)
##使用循环计算向量点积
tic = time.process_time()
dot = 0
for i in range(len(x1)):
    dot+= x1[i]*x2[i]
toc = time.process_time()
print ("dot = " + str(dot) + "\n for loop----- Computation time = " + str(1000*(toc - tic)) + "ms")
##使用numpy函数求点积
tic = time.process_time()
dot = 0
dot = np.dot(x1,x2)
toc = time.process_time()
print ("dot = " + str(dot) + "\n verctor version---- Computation time = " + str(1000*(toc - tic)) + "ms")


打印结果:


dot = 250215.601995
 for loop----- Computation time = 798.3389819999998ms
dot = 250215.601995
 verctor version---- Computation time = 1.885051999999554ms


从程序运行结果上来看,该例子使用for循环的运行时间是使用向量运算的运行时间的约400倍。因此,深度学习算法中,一般都使用向量化矩阵运算。



06 广播机制


广播机制(Broadcasting)的功能是为了方便不同shape的数组(NumPy库的核心数据结构)进行数学运算。广播提供了一种向量化数组操作的方法,以便在C中而不是在Python中进行循环,这通常会带来更高效的算法实现。广播的兼容原则为:


  • 对齐尾部维度。

  • shape相等or其中shape元素中有一个为1。


以下通过实例来具体说明。


import numpy as np
a=np.arange(10)
b=np.arange(10)
#两个shape相同的数组相加
print(a+b)
#一个数组与标量相加
print(a+3)
#两个向量相乘
print(a*b)

#多维数组之间的运算
c=np.arange(10).reshape([5,2])
d=np.arange(2).reshape([1,2])
#首先将d数组进行复制扩充为[5,2],如何复制请参考图1-2,然后相加。
print(c+d)


Python必备基础:这些NumPy的神操作你都掌握了吗?_java_02

▲图1-2 NumPy多维数组相加


打印结果:


[ 0  2  4  6  8 10 12 14 16 18]
[ 3  4  5  6  7  8  9 10 11 12]
[ 0  1  4  9 16 25 36 49 64 81]
[[ 0  2]
 [ 2  4]
 [ 4  6]
 [ 6  8]
 [ 8 10]]


有时为了保证矩阵运算正确,我们可以使用reshape()函数来变更矩阵的维度。



07 小结


阅读完本文,你已get到如下技能:


√ 如何生成NumPy的ndarray的几种方式。

√ 如何存取元素。

√ 如何操作矩阵。

√ 如何合并或拆分数据。

√ NumPy的通用函数。

√ NumPy的广播机制。