作用:去均值和方差归一化。且是针对每一个特征维度来做的,而不是针对样本。
【注:】
并不是所有的标准化都能给estimator带来好处。
“Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance).”
实例代码
# coding=utf-8
# 统计训练集的 mean 和 std 信息
from sklearn.preprocessing import StandardScaler
import numpy as np
def test_algorithm():
np.random.seed(123)
print('use sklearn')
# 注:shape of data: [n_samples, n_features]
data = np.random.randn(10, 4)
scaler = StandardScaler()
scaler.fit(data)
trans_data = scaler.transform(data)
print('original data: ')
print data
print('transformed data: ')
print trans_data
print('scaler info: scaler.mean_: {}, scaler.var_: {}'.format(scaler.mean_, scaler.var_))
print('\n')
print('use numpy by self')
mean = np.mean(data, axis=0)
std = np.std(data, axis=0)
var = std * std
print('mean: {}, std: {}, var: {}'.format(mean, std, var))
# numpy 的广播功能
another_trans_data = data - mean
# 注:是除以标准差
another_trans_data = another_trans_data / std
print('another_trans_data: ')
print another_trans_data
if __name__ == '__main__':
test_algorithm()
程序的输出如下:
use sklearn
original data:
[[-1.0856306 0.99734545 0.2829785 - 1.50629471]
[-0.57860025 1.65143654 - 2.42667924 - 0.42891263]
[1.26593626 - 0.8667404 - 0.67888615 - 0.09470897]
[1.49138963 - 0.638902 - 0.44398196 - 0.43435128]
[2.20593008
2.18678609
1.0040539
0.3861864]
[0.73736858 1.49073203 - 0.93583387 1.17582904]
[-1.25388067 - 0.6377515
0.9071052 - 1.4286807]
[-0.14006872 - 0.8617549 - 0.25561937 - 2.79858911]
[-1.7715331 - 0.69987723
0.92746243 - 0.17363568]
[0.00284592 0.68822271 - 0.87953634 0.28362732]]
transformed
data:
[[-0.94511643 0.58665507 0.5223171 - 0.93064483]
[-0.53659117 1.16247784 - 2.13366794 0.06768082]
[0.9495916 - 1.05437488 - 0.42049501
0.3773612]
[1.13124423 - 0.85379954 - 0.19024378 0.06264126]
[1.70696485
1.63376764
1.22910949
0.8229693]
[0.52371324 1.02100318 - 0.67235312 1.55466934]
[-1.08067913 - 0.85278672
1.13408114 - 0.858726]
[-0.18325687 - 1.04998594 - 0.00561227 - 2.1281129]
[-1.49776284 - 0.9074785
1.15403514
0.30422599]
[-0.06810748 0.31452186 - 0.61717074 0.72793583]]
scaler info: scaler.mean_: [0.08737571 0.33094968 - 0.24989369 - 0.50195303], scaler.var_: [1.54038781 1.29032409
1.04082479 1.16464894]
use numpy by self
mean: [0.08737571 0.33094968 - 0.24989369 - 0.50195303], std: [1.24112361 1.13592433 1.02020821
1.07918902], var: [1.54038781 1.29032409
1.04082479 1.16464894]
another_trans_data:
[[-0.94511643 0.58665507 0.5223171 - 0.93064483]
[-0.53659117 1.16247784 - 2.13366794 0.06768082]
[0.9495916 - 1.05437488 - 0.42049501
0.3773612]
[1.13124423 - 0.85379954 - 0.19024378 0.06264126]
[1.70696485
1.63376764
1.22910949
0.8229693]
[0.52371324 1.02100318 - 0.67235312 1.55466934]
[-1.08067913 - 0.85278672
1.13408114 - 0.858726]
[-0.18325687 - 1.04998594 - 0.00561227 - 2.1281129]
[-1.49776284 - 0.9074785
1.15403514
0.30422599]
[-0.06810748 0.31452186 - 0.61717074 0.72793583]]