/*** *strlen - return the length of a null-terminated string * *Purpose: *       Finds the length in bytes of the given string, not including *       the final null character. * *Entry: *       const char * str - string whose length is to be computed * *Exit: *       length of the string "str", exclusive of the final null byte * *Exceptions: * *******************************************************************************/  size_t __cdecl strlen (         const char * str         ) {         const char *eos = str;          while( *eos++ ) ;          return( eos - str - 1 ); }




01 size_t strlen(str)const char *str; 02 { 03   const char *char_ptr; 04   const unsigned long int *longword_ptr; 05   unsigned long int longword, himagic, lomagic; 06    07   /* Handle the first few 08   characters by reading one character at a time. Do this until CHAR_PTR is 09   aligned on a longword boundary. */ 10   for (char_ptr = str; ((unsigned long int)char_ptr &(sizeof(longword) - 1)) != 11     0; ++char_ptr) 12     if (*char_ptr == '\0') 13       return char_ptr - str; 14        15   /* All these elucidatory comments refer to 4-byte longwords, but the theory 16   applies equally well to 8-byte longwords. */ 17   longword_ptr = (unsigned long int*)char_ptr; 18    19   /* Bits 31, 24, 16, and 8 of  this  number are  zero. Call  these bits the "holes."  20   Note that there is a hole just to the left of each 21   byte, with an extra at the end: bits: 01111110 11111110 11111110 11111111 22   bytes: AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD The 1-bits make sure that 23   carries propagate to the next 0-bit. The 0-bits provide holes for carries 24   to fall into. */ 25   himagic = 0x80808080L; 26   lomagic = 0x01010101L; 27   if (sizeof(longword) > 4) 28   { 29      /* 64-bit version of the magic. */ /* Do the shift in two steps to avoid a 30     warning if long has 32 bits. 31      */ 32     himagic = ((himagic << 16) << 16) | himagic; 33     lomagic = ((lomagic << 16) << 16) | lomagic; 34   } 35   if (sizeof(longword) > 8) 36     abort(); 37   /* Instead of the traditional loop which tests each character, we will test 38   a longword at a time. The tricky part is testing if *any of the four* 39   bytes in the longword in question are zero. */ 40   for (;;) 41   { 42     longword =  *longword_ptr++; 43     if (((longword - lomagic) &~longword &himagic) != 0) 44     { 45       /* Which of the bytes was the zero? If none of them were, it was a 46       misfire; continue the search. 47        */ 48       const char *cp = (const char*)(longword_ptr - 1); 49       if (cp[0] == 0) 50         return cp - str; 51       if (cp[1] == 0) 52         return cp - str + 1; 53       if (cp[2] == 0) 54         return cp - str + 2; 55       if (cp[3] == 0) 56         return cp - str + 3; 57       if (sizeof(longword) > 4) 58       { 59         if (cp[4] == 0) 60           return cp - str + 4; 61         if (cp[5] == 0) 62           return cp - str + 5; 63         if (cp[6] == 0) 64           return cp - str + 6; 65         if (cp[7] == 0) 66           return cp - str + 7; 67       } 68     } 69   } 70 }


  挨个判断字符是否为0,遇到0则退出,代码很简洁,也不算性能低。只是有点不足,在字长是4字节或者8字节 

的 计算机上,每次只读取一个字节,有些浪费计算机的能力,如果每次都读取4字节或者8字节,总的读取次数 

就大大减少,在读取4字节或者8字节的时候,如果地址不在边界上,机器就要分两次才能读取完成,这样性能 

将会降低,弱化优化效果,所以前几个字符必须单独处理,然后从字长 边界地址开始,每次读取4字节或者8字 

节。 


新的方式: 


* 开头的几字节单独处理 

* 中间部分4字节或者8字节处理 

* 最后几字节单独处理 


看上去很好,但是还有一个问题,4字节或者8字节读取的时候,如何保证有全0的字节存在,因为0是用来表示 

字符串的结尾的。判断连 续的几个字节中是否存在全0的字节,成了优化的关键。我们不能一个字节一个字节判 

断,因为优化的思想就是一次读取多个字节,减少 总的读取次数,单独判断每一个字节的话,就失去优化的效 

果了。 


怎么办呢,当然首先考虑位运算了。 


* 一个纯0的字节有什么特点? 很明显,每一位都是0,按位取反后每一位都是1。 

* 一个全0的字节还有什么特点? 这个字节减1,必然要从更高字节借1,借1后,该字节的最高位必然是1。 


似乎有些眉目了,以4字节整数n为例,我们只要把每个字节分别减去1,如果有纯0的字节存在,必然会有借位, 

借位之后会在字节最高 位留下一个1。只要判断每个字节的最高位是否存在1就可以了,然而,这里还有一个问 

题,就是这个4字节整数里,某些字节本来最高 位可能就含有1,所以必须排除掉这些字节。 


解决方案: 


* 将n的每一个字节分别减1,并取出最高位,得到x,如果存在借位,该字节最高位就是1 

* 将n的每一个字节按位取反并取出最高位,得到y,y中某字节最高位为1,表示它在n里是0 

* 将x和y按位与运算,若不等于0,说明n至少有1字节原本最高位不是1,后来变成1了,就是借位 


若n中存在全0字节,则 x&y 一定不为0,因为借位的那个字节最高位会被置为1 

若n中不存在全0字节,则不会产生借位,x&y 等于0。 

x&y ==  (n-0x01010101) & ~n & 0x80808080