hdu 1019 Least Common Multiple
Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 29850    Accepted Submission(s): 11285

Problem Description
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.

Input
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 ... nm where m is the number of integers in the set and n1 ... nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.

Output
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.


Sample Input
2
3 5 7 15
6 4 10296 936 1287 792 1
 
Sample Output
105
10296

/*第一种:(推荐) 
    */ 
#include<cstdio>
int gcd(int a,int b)
{
    return !b?a:gcd(b,a%b);
}
int lcm(int a,int b)
{
    return a*b/gcd(a,b);           //a*b/gcd(a,b)就错了 ,可能是 a*b 的值过大 ,应定义为long long类型吧。 
}
int main()

    int T,i,n;
    scanf("%d",&T);
    while(T--)
    {
        int a[1003];
        scanf("%d",&n);
        if(n==1)
        {
            scanf("%d",&a[0]);
            printf("%d\n",a[0]);
        }
        if(n>=2)
        {
            for(i=0; i<2; i++)
            scanf("%d",&a[i]);
            long long r=lcm(a[0],a[1]);
            for(i=2; i<n; i++)
            {
                scanf("%d",&a[i]);
                r=lcm(r,a[i]);
            }
            printf("%I64d\n",r);
        }
    }
    return 0;
}
/*
第二种: 
    */
#include<cstdio>
int gcd(int a,int b)
{
    return !b?a:gcd(b,a%b);
}
int main()

    int T,i,n;
    scanf("%d",&T);
    while(T--)
    {
        int a[1003];
        scanf("%d",&n);
        if(n==1)
        {
            scanf("%d",&a[0]);
            printf("%d\n",a[0]);
        }
        if(n>=2)
        {
            for(i=0; i<n; i++)
            {
                scanf("%d",&a[i]);
            }
            for(i=1; i<n; i++)
            {
                a[i]=a[i-1]/gcd(a[i-1],a[i])*a[i];   //同上  a[i]=a[i-1]*a[i]/gcd(a[i-1],a[i])  oj会判错
            }
            printf("%d\n",a[n-1]);
        }
    }
    return 0;
}