点值代表包含改点 且 lcm等于该点的子集个数,
操作 需要,点加值,和段乘值。段乘值可以懒标记。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include<vector>
#include<bitset>
#include<queue>
using namespace std;
#define N 100010
#define ll __int64
struct node
{
ll a,b;
}p[N];
const ll mod=1e9+7;
bool cmp(node c,node d)
{
if(c.a==d.a)
return c.b<d.b;
return c.a<d.a;
}
struct pos{
ll x,f;
}q[N];
ll a[N];
bool comp(pos a,pos b)
{
if(a.x==b.x)
return a.f>b.f;
return a.x<b.x;
}
ll quickpow(ll n,ll m)
{
ll b=1;
while(m)
{
if(m&1)
b=b*n%mod;
m>>=1;
n=n*n%mod;
}
return b;
}
struct Tree
{
ll sum,quan,sumquan;
ll l,r;
}tree[4*N];
ll c[N];
void build(ll id,ll x,ll y)
{
tree[id].l=x,tree[id].r=y;
tree[id].sum=tree[id].sumquan=0;
tree[id].quan=1;
if(x==y)
return ;
ll mid=(x+y)>>1;
build(id<<1,x,mid);
build(id<<1|1,mid+1,y);
}
void pushdown(ll id)
{
if(tree[id].l!=tree[id].r)
{
tree[id<<1].quan=tree[id<<1].quan*tree[id].quan%mod;
tree[id<<1|1].quan=tree[id<<1|1].quan*tree[id].quan%mod;
tree[id].quan=1;
}
}
void pushup(ll id)
{
tree[id].sum=(tree[id<<1].sum*tree[id<<1].quan%mod+tree[id<<1|1].sum*tree[id<<1|1].quan%mod)%mod;
tree[id].sumquan=(tree[id<<1].sumquan*tree[id<<1].quan%mod+tree[id<<1|1].sumquan*tree[id<<1|1].quan%mod)%mod;
}
ll query(ll id,ll x,ll y)
{
if(tree[id].l==x && tree[id].r==y)
{
return (tree[id].sum*tree[id].quan)%mod;
}
pushdown(id);
ll mid=(tree[id].l+tree[id].r)>>1;
if(y<=mid)
return query(id<<1,x,y);
else if(x>=mid+1)
return query(id<<1|1,x,y);
else
return (query(id<<1,x,mid)+query(id<<1|1,mid+1,y))%mod;
}
ll queryquan(ll id,ll x,ll y)
{
if(tree[id].l==x && tree[id].r==y)
return tree[id].sumquan*tree[id].quan%mod;
pushdown(id);
ll mid=(tree[id].l+tree[id].r)>>1;
if(y<=mid)
return queryquan(id<<1,x,y);
else if(x>=mid+1)
return queryquan(id<<1|1,x,y);
else
return (queryquan(id<<1,x,mid)+queryquan(id<<1|1,mid+1,y))%mod;
}
void add(ll id,ll x,ll y)
{
if(tree[id].l==tree[id].r)
{
tree[id].sum=tree[id].sum*tree[id].quan%mod;
tree[id].quan=1;
tree[id].sum+=y;
tree[id].sumquan=tree[id].sum*(c[x])%mod;
return ;
}
pushdown(id);
ll mid=(tree[id].l+tree[id].r)>>1;
if(x<=mid)
add(id<<1,x,y);
else
add(id<<1|1,x,y);
pushup(id);
}
void multi(ll id,ll x,ll y,ll k)
{
if(tree[id].l==x && tree[id].r==y)
{
tree[id].quan=tree[id].quan*k%mod;
return ;
}
pushdown(id);
ll mid=(tree[id].l+tree[id].r)>>1;
if(y<=mid)
multi(id<<1,x,y,k);
else if(x>mid)
multi(id<<1|1,x,y,k);
else
{
multi(id<<1,x,mid,k);
multi(id<<1|1,mid+1,y,k);
}
pushup(id);
}
int main()
{
ll n;
while(scanf("%I64d",&n)!=EOF)
{
ll i,j,k;
for(i=1;i<=n;i++)
{
scanf("%I64d %I64d",&p[i].a,&p[i].b);
}
sort(p+1,p+1+n,cmp);
for(i=1;i<=n;i++)
{
q[i].x=p[i].b;
q[i].f=i;
}
sort(q+1,q+1+n,comp);
for(i=1;i<=n;i++)
{
a[q[i].f]=i;
}
ll ans=0;
build(1,1,n+1);
for(i=1;i<=n;i++)
c[i]=quickpow((ll)3,(ll)q[i].x);
for(i=1;i<=n;i++)
{
ll t1=quickpow((ll)2,(ll)p[i].a);
ll t0=t1;
ll t2=query(1,1,a[i]);
t1=t1*quickpow((ll)3,(ll)p[i].b)%mod;
t1=t1*(t2+1)%mod;
ans=(ans+t1)%mod;
ll t3=queryquan(1,a[i]+1,n+1);
t0=t0*t3%mod;
ans=(ans+t0)%mod;
add(1,a[i],t2+1);
multi(1,a[i]+1,n+1,2);
}
printf("%I64d\n",ans);
}
}