解线性方程组的迭代法--大型稀疏矩阵---雅可比迭代法C++实现_#define


解线性方程组的迭代法--大型稀疏矩阵---雅可比迭代法C++实现_#define_02


解线性方程组的迭代法--大型稀疏矩阵---雅可比迭代法C++实现_i++_03

//
// Jacobi 迭代求解线性方程组 //
//
#include<math.h>
#define//设置方程的最大维数
#define
#define//求解精度
#include<iostream>
using namespace std;

int main()
{
int n;
int i, j, k;
double err;
static double a[MAX_N][MAX_N], b[MAX_N][MAX_N], c[MAX_N], g[MAX_N];
static double x[MAX_N], nx[MAX_N];
printf("\nInput n value(dim of AX=C):");//输入方程维度n*n
cin>>n;
if (n > MAX_N) {
cout << "The input n is larger than Max_N,please redefine the Max_N." << endl;
return 1;
}
else if (n <= 0) {
printf("Please input a number between 1 and %d\n", MAX_N);
return 1;
}
//初始化工作:
//任务一:开始输入AX=C的系数矩阵A
printf("Now input the matrix a(i,j),i,j=0,...,%d:\n", n - 1);
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
cin >> a[i][j];
//任务二:输入C矩阵
printf("Now input the matrix b(i),i=0,...,%d\n", n - 1);
for (i = 0; i < n; i++) cin >> c[i];
//任务三:生成 x^(k+1) = b * x^(k)+ g 迭代矩阵B 和 g [ x^k表示第k次获得的x]
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
if (a[i][i] == 0)
cerr << "暂时不支持系数矩阵对角线元素为0" << endl;
b[i][j] = -a[i][j] / a[i][i];
g[i] = c[i] / a[i][i]; //先假设a[i][i]!=0,学习中暂时用不到
}
b[i][i] = 0;
}
for (i = 0; i < MAXREPT; i++) {//最大迭代周期数

for (j = 0; j < n; j++)
nx[j] = g[j];
for (j = 0; j < n; j++) {
for (k = 0; k < n; k++) {
if (j == k) continue;
nx[j] += b[j][k] * x[k]; // x^(k+1) = b * x^(k)+ g 迭代
}
}

err = 0; //x^(k+1)-x^k的误差
for (j = 0; j < n; j++) {
if (err < fabs(nx[j] - x[j])) {
err = fabs(nx[j] - x[j]); //求最大差即最大范式
}
}

for (j = 0; j < n; j++) x[j] = nx[j];

if (err < epsilon) { //控制误差
cout << "Solve ... x_i=" << endl;
for (j = 0; j < n; j++)
cout << x[j] << endl;
return 0;
}
}
printf("After %d repeat ,no result\n", MAXREPT);
return 1;
}

/*
方程组:
64x1 - 3x2 - x3 =14
2x1 -90 x2+x3 = -5
x1 + x2 + 40x3 = 20
输入样例:
3
64 -3 -1 2 -90 1 1 1 40
14 -5 20
*/

解线性方程组的迭代法--大型稀疏矩阵---雅可比迭代法C++实现_#define_04