1. PyTorch简介

  • 概念:由Facebook人工智能研究小组开发的一种基于Lua编写的Torch库的Python实现的深度学习库
  • 优势:简洁、上手快、具有良好的文档和社区支持、项目开源、支持代码调试、丰富的扩展库

2 PyTorch基础知识

2.1张量

  • 分类:0维张量(标量)、1维张量(向量)、2维张量(矩阵)、3维张量(时间序列)、4维张量(图像)、5维张量(视频)
  • 概念:一个数据容器,可以包含数据、字符串等
import torch
# 创建tensor
x = torch.rand(4, 3)
print(x)
# 构造数据类型为long,数据是0的矩阵
x = torch.zeros(4, 3, dtype=torch.long)
print(x)
tensor([[0.9515, 0.6332, 0.8228],
        [0.3508, 0.0493, 0.7606],
        [0.7326, 0.7003, 0.1925],
        [0.1172, 0.8946, 0.9501]])
tensor([[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]])
  • 常见的构造Tensor的函数:

函数

功能

Tensor(*sizes)

基础构造函数

tensor(data)

类似于np.array

ones(*sizes)

全1

zeros(*sizes)

全0

eye(*sizes)

对角为1,其余为0

arange(s,e,step)

从s到e,步长为step

linspace(s,e,steps)

从s到e,均匀分成step份

rand/randn(*sizes)

rand是[0,1)均匀分布;randn是服从N(0,1)的正态分布

normal(mean,std)

正态分布(均值为mean,标准差是std)

randperm(m)

随机排列

  • 操作:
  1. 使用索引表示的变量与原数据共享内存,即修改其中一个,另一个也会被修改
  2. 使用torch.view改变tensor的大小
  3. 广播机制:当对两个形状不同的Tensor按元素运算时,可能会触发广播(broadcasting)机制
# 使用view改变张量的大小
x = torch.randn(5, 4)
y = x.view(20)
z = x.view(-1, 5) # -1是指这一维的维数由其他维度决定
print(x.size(), y.size(), z.size())
torch.Size([5, 4]) torch.Size([20]) torch.Size([4, 5])
x = tensor([[1, 2]])
y = tensor([[1],
        [2],
        [3]])
x + y = tensor([[2, 3],
        [3, 4],
        [4, 5]])

2.2 自动求导

  • autograd包:提供张量上的自动求导机制
  • 原理:如果设置.requires_gradTrue,那么将会追踪张量的所有操作。当完成计算后,可以通过调用.backward()自动计算所有的梯度。张量的所有梯度将会自动累加到.grad属性
  • FunctionTensorFunction互相连接生成了一个无环图 (acyclic graph),它编码了完整的计算历史。每个张量都有一个.grad_fn属性,该属性引用了创建Tensor自身的Function
x = torch.ones(2, 2, requires_grad=True)
print(x)
tensor([[1., 1.],
        [1., 1.]], requires_grad=True)
y = x ** 2
print(y)
tensor([[1., 1.],
        [1., 1.]], grad_fn=<PowBackward0>)
z = y * y * 3
out = z.mean()
print("z = ", z)
print("z mean = ", out)
z =  tensor([[3., 3.],
        [3., 3.]], grad_fn=<MulBackward0>)
z mean =  tensor(3., grad_fn=<MeanBackward0>)

 

pytorch 工业应用 pytorch go_pytorch

 grad的反向传播:运行反向传播,梯度都会累加之前的梯度,所以一般在反向传播之前需把梯度清零

out.backward()
print(x.grad)
tensor([[3., 3.],
        [3., 3.]])
# 反向传播累加
out2 = x.sum()
out2.backward()
print(x.grad)
tensor([[4., 4.],
        [4., 4.]])

2.3并行计算

  • 目的:通过使用多个GPU参与训练,加快训练速度,提高模型学习的效果
  • CUDA:通过使用NVIDIA提供的GPU并行计算框架,采用cuda()方法,让模型或者数据迁移到GPU中进行计算
  • 并行计算方法:
  1. Network partitioning:将一个模型网络的各部分拆分,分配到不同的GPU中,执行不同的计算任务
  2. Layer-wise partitioning:将同一层模型拆分,分配到不同的GPU中,训练同一层模型的部分任务
  3. Data parallelism(主流):将不同的数据分配到不同的GPU中,执行相同的任务