本节介绍频率特性法的基本概念
本节介绍典型环节的幅相频率特性和对数频率特性
本节介绍绘制开环系统的Nyquist图和Bode图


文章目录

  • 频率特性的基本概念
  • 幅相频率特性 Nyquist
  • 典型环节的幅相特性曲线
  • 开环幅相特性曲线
  • 0 1 2 3型系统的开环Nyquist
  • 其他型别系统的开环Nyquist
  • 对数频率特性 Bode
  • 半对数座标系
  • 典型环节的对数频率特性曲线
  • 例题与其他概念
  • 开环对数频率特性
  • 非最小相角系统
  • 对数幅相特性 Nichols



前一章讲了根轨迹法,属于一种复域分析方法。而除了在复域中处理输入输出,还可以在频域中处理(实际上频域中处理更加常用),所以这里介绍频率特性分析法。
频域分析,实际上就是研究稳态正弦响应幅值相角 随频率的变化规律。
频域分析法通过研究开环频率特性进而研究闭环稳定性及性能。
与根轨迹相同,也是一种图解分析法,所以方便实用但也有一定的近似性。

频率特性的基本概念

什么是频率响应?

频率特性是指线性系统稳态正弦响应的幅值、相角随输入频率变化的规律性

镜像频率 镜像频率图解_镜像频率


比如在这里解出来uc(t),里面含有镜像频率 镜像频率图解_线性代数_02,说明输出与输入的频率有关。这个规律就叫做频率特性

镜像频率 镜像频率图解_镜像频率_03


输出第一项将随着时间增大而趋于0,称为衰减信号瞬态分量

而第二项是一个正弦函数形式,频率为镜像频率 镜像频率图解_线性代数_02,称为稳态分量

取出稳态分量,也就是得到稳态正弦响应。这个正弦函数的幅值镜像频率 镜像频率图解_算法_05和相位镜像频率 镜像频率图解_算法_06均为频率镜像频率 镜像频率图解_线性代数_02的函数,因此可以构建一个频率传递函数,分别对应其幅值和相角,记为:

镜像频率 镜像频率图解_镜像频率_08

镜像频率 镜像频率图解_学习_09就是系统的频率特性。

频率特性的定义

  • 方法1:
    分别定义幅值和相角
    镜像频率 镜像频率图解_镜像频率_10
    这两个公式分别称为幅频特性相频特性
  • 镜像频率 镜像频率图解_镜像频率_11

  • 方法2:
    利用复域传递函数
    镜像频率 镜像频率图解_学习_12
  • 镜像频率 镜像频率图解_算法_13

  • 方法3:
    利用fourier变换
    镜像频率 镜像频率图解_自动化_14
  • 镜像频率 镜像频率图解_学习_15

  • 也就是先通过复域传递函数,进行拉氏反变换,然后把s替换成镜像频率 镜像频率图解_镜像频率_16,化简之后发现变成了傅氏反变换的形式,因此推导出这个公式。

接下来根据定义做一道例题:

镜像频率 镜像频率图解_学习_17


由于稳态正弦响应一定是与输入频率相同的正弦函数,所以只需要确定出幅值和相位就可以写出函数了。要表示系统频率特性,可以采用多种不同的方法:

镜像频率 镜像频率图解_学习_18

幅相频率特性 Nyquist

也叫做极座标图。在复平面上,频率特性可以表示为一个向量,向量的长度表示频率特性的幅值,向量与实轴正方向的夹角为频率响应的相位,这样就构成了Nyquist图。

典型环节的幅相特性曲线

比例 微分 积分 惯性 一阶复合微分环节

镜像频率 镜像频率图解_镜像频率_19


镜像频率 镜像频率图解_算法_20

现在再来看Nyquist图,颇有一种根轨迹的感觉。平面叫做G平面,也就是说平面上的每一个点都表示一个镜像频率 镜像频率图解_学习_09。随着镜像频率 镜像频率图解_线性代数_02的取值从0到无穷,频率特性留下的轨迹就成为了幅相特性曲线。

根据一个点的位置,可以知道镜像频率 镜像频率图解_学习_09的幅值和相位,但并不能直接读出镜像频率 镜像频率图解_线性代数_02

镜像频率 镜像频率图解_线性代数_25


之前都是已知系统传递函数来画图。但也可以从Nyquist图反求系统传递函数:

镜像频率 镜像频率图解_算法_26

震荡环节

镜像频率 镜像频率图解_线性代数_27

震荡环节和之前最大的不同就是根据镜像频率 镜像频率图解_自动化_28的不同,Nyquist图的形状也不同。

研究曲线的形状,求幅值的最值:

镜像频率 镜像频率图解_自动化_29


1.在镜像频率 镜像频率图解_自动化_28较大时,随镜像频率 镜像频率图解_线性代数_02增大,幅值单调减小,也就是曲线一直趋近原点。时间响应该震荡依旧震荡

镜像频率 镜像频率图解_自动化_28较小时,随镜像频率 镜像频率图解_线性代数_02增大,幅值先增大后减小,也就是曲线先远离原点,再趋近原点。

2.引入谐振频率谐振峰值来表示幅值最大点的频率和幅值。

由图像反求传递函数:

镜像频率 镜像频率图解_自动化_34

二阶复合微分环节

镜像频率 镜像频率图解_线性代数_35


「这个不稳定二阶微分,还有前面的不稳定一阶复合微分,是我自己瞎取的名字,方便和不稳定震荡环节、不稳定惯性环节相对应」

延迟环节

镜像频率 镜像频率图解_自动化_36

开环幅相特性曲线

之前是每一个环节分开来。现在直接从开环传递函数入手。仍然是分成幅值和相角两个方面分别计算,再合成为矢量。根据镜像频率 镜像频率图解_线性代数_02的变化绘制成曲线。

镜像频率 镜像频率图解_镜像频率_38


绘制开环幅相特性一般不要求高精度,所以根据起点、终点,大概勾勒出形状即可。如果有更高的要求,可以代入与实轴的交点等条件增加精度。

0 1 2 3型系统的开环Nyquist

看这个例题:

镜像频率 镜像频率图解_线性代数_39


镜像频率 镜像频率图解_算法_40


也就是说不同的系统型别,开环幅相特性曲线朝向是不同的。而对于某一型的系统,可以根据这个例题,直接勾勒出对应的曲线形状。来看个例题:

镜像频率 镜像频率图解_镜像频率_41


基本思路:实部虚部分开,计算与实轴的交点,找出渐近线,再根据相应系统的型别对应的曲线形状勾勒出曲线。

那如果不是0 1 2 3型系统,而是其他型别该怎么办?

其他型别系统的开环Nyquist

镜像频率 镜像频率图解_镜像频率_42


那就先根据起点和终点勾勒出一个形状,再实部虚部分开计算与座标轴的交点,描绘曲线。

对数频率特性 Bode

Nyquist图计算比较繁琐,而且无法直观看出每个零点和极点的影响。而Bode图更加方便因此工程实际中使用更多。
Bode图由对数幅频曲线对数相频曲线两部分组成。

半对数座标系

Bode图是画在半对数座标系里面的。

横轴:频率镜像频率 镜像频率图解_线性代数_02,但按照频率的对数镜像频率 镜像频率图解_自动化_44标定

纵轴1:对数幅值(Logarithm magnitude,简称Lm)

镜像频率 镜像频率图解_线性代数_45,线性标定

纵轴2:相角,线性标定

镜像频率 镜像频率图解_自动化_46

两个纵轴都很好理解,一个是对幅值取对数×20,一个就是相角本身,也都是线性标度。
而对于横轴,由于划分刻度是按照对数,因此疏密不一。这里一定要注意:横座标上的某个点,直接读出其座标值,是频率,而不是频率对数
对数分度,有"等距等比"的性质,也就是当变量增大或减小10倍(记为dec,称为十倍频或者旬距)时,座标间的距离变化一个单位长度。

典型环节的对数频率特性曲线

part1:比例 微分 积分 惯性 一阶复合微分环节

镜像频率 镜像频率图解_自动化_47


镜像频率 镜像频率图解_线性代数_48


惯性环节和一阶复合微分环节的特征是镜像频率 镜像频率图解_线性代数_49注意:

镜像频率 镜像频率图解_算法_50


这里的镜像频率 镜像频率图解_算法_51曲线都是画的直线,是经过了近似处理,为研究方便的。

镜像频率 镜像频率图解_学习_52曲线全部都是中心对称的,这里只证明了一个。画的时候可以根据对称性更轻松画出。

震荡 二阶复合微分 延迟环节

镜像频率 镜像频率图解_线性代数_53


镜像频率 镜像频率图解_自动化_54


震荡环节和二阶复合微分环节的特征是镜像频率 镜像频率图解_算法_55

镜像频率 镜像频率图解_线性代数_56

例题与其他概念

例题由图像倒求传递函数

镜像频率 镜像频率图解_学习_57


概念有这么几个,了解即可。

转折频率

对数幅值频率特性拐弯的点

对于惯性、一阶复合微分:镜像频率 镜像频率图解_学习_58

对于震荡、二阶复合微分:镜像频率 镜像频率图解_自动化_59

之前都是画的近似曲线,变成折线,但实际上在转折频率处镜像频率 镜像频率图解_算法_51已经有改变了。以惯性环节为例,在转折频率处有-3dB的衰减

镜像频率 镜像频率图解_算法_61

截止频率

对数幅值频率特性为0的点,也就是镜像频率 镜像频率图解_学习_62

开环对数频率特性

镜像频率 镜像频率图解_自动化_63


在这里可以发现,绘制开环对数频率特性的时候,无论是对数幅值还是相角,都符合线性定理,可以根据多个典型环节叠加而来。

绘制开环Bode图的步骤

  1. 将开环传递函数化为尾1标准型
  2. 列出每一个环节的转折频率
  3. 确定基准线(最小的转折频率左边的情况)
    基准线过点(镜像频率 镜像频率图解_镜像频率_64
    斜率镜像频率 镜像频率图解_线性代数_65,v为系统型别
  4. 叠加做图:
    惯性、一阶复合微分镜像频率 镜像频率图解_线性代数_66
    震荡、二阶复合微分镜像频率 镜像频率图解_线性代数_67
  5. 修正:
    两惯性环节转折频率很接近时镜像频率 镜像频率图解_算法_68用圆弧修正
    震荡环节镜像频率 镜像频率图解_镜像频率_69用曲线表示
  6. 检查:
    镜像频率 镜像频率图解_线性代数_70最右端斜率为镜像频率 镜像频率图解_镜像频率_71
    转折点个数=惯性、一阶复合微分、震荡、二阶复合微分环节个数和
    镜像频率 镜像频率图解_自动化_72

镜像频率 镜像频率图解_算法_73


关于相角频率特性,这里只是大致勾勒一下。开环的相角频率特性同样是多个典型环节特性的叠加。

实在严谨的做图中,需要使用圆规测距描点,再连接成曲线。但因为工程实践不太看这个曲线,所以多做题根据手感勾一条一般问题不大。

镜像频率 镜像频率图解_算法_74


镜像频率 镜像频率图解_自动化_75

紧接着借这道例题讲一下Nyquist图和Bode图的对应关系:

镜像频率 镜像频率图解_自动化_76


先看幅值,Bode图的一个幅值,对应Nyquist图上的一个圆,根据圆与曲线的交点就可以找出两图中对应的点。

再看相角,Bode图的一个相角,对应Nyquist图上的一条射线,同理可以找出两图对应的点。例题:从对数频率特性反求传递函数

镜像频率 镜像频率图解_自动化_77


通过转折点、斜率可以知道系统的构型。本题全是直线,镜像频率 镜像频率图解_自动化_28是不可求的,因此要求的参数只有一个K。

除了这种方法,这道题还有很多别的方法

镜像频率 镜像频率图解_学习_79


这里绿色框的近似处理,跟前面讲典型环节时的近似处理是一样的意思,如果代入镜像频率 镜像频率图解_线性代数_02后s项大于1,把1舍去;反之,把s项舍去。最后在这里拓展一下:

镜像频率 镜像频率图解_镜像频率_81


首先是基准线的函数关系式:

镜像频率 镜像频率图解_学习_82

由此可以得出,已知基准线与横轴交点座标镜像频率 镜像频率图解_算法_83时:

镜像频率 镜像频率图解_镜像频率_84

非最小相角系统

先来看一道例题:

之前在没有给出相频特性的情况下,默认所有环节都是稳定的。但是如果给出了相频特性,就需要根据这条曲线来确定具体哪些环节稳定而哪些环节不稳定了。

镜像频率 镜像频率图解_自动化_85


「这里是用了代数的方法去计算相角,做题的时候也可以画零点极点分布图来帮助确定相角。」

在这里就涉及到了非最小相角系统
在右半S平面存在开环零、极点,或带有纯延时环节的系统称为非最小相角系统。

如果更加直观的解释,就是系统的各个环节中,含有某一个或几个不稳定环节或者纯延时环节。
也就是前面那个例题,在+ -,- +,- -的情况下,都属于非最小相角系统。

之所以叫做非最小相角系统,是因为相比最小相角系统,非最小相角系统相角变化的绝对值一般更大

但值得注意的是:非最小相角系统未必不稳定

对数幅相特性 Nichols

使用得比较少,只简单介绍一下。
相当于把Bode图的幅值、相角两条曲线合为一条。以相角镜像频率 镜像频率图解_学习_52为横座标,对数幅值镜像频率 镜像频率图解_算法_51为纵座标,根据频率镜像频率 镜像频率图解_线性代数_02变化,描绘出对应的点形成的曲线。