Hive面试题—理清hive应用思路
问题:有一张很大的表:TRLOG该表大概有2T左右。
TRLOG:
CREATE TABLE TRLOG
(PLATFORM string,
USER_ID int,
CLICK_TIME string,
CLICK_URL string)
row format delimited fields terminated by '\t';
数据:
PLATFORM USER_ID CLICK_TIME CLICK_URL
WEB 12332321 2013-03-21 13:48:31.324 /home/
WEB 12332321 2013-03-21 13:48:32.954 /selectcat/er/
WEB 12332321 2013-03-21 13:48:46.365 /er/viewad/12.html
WEB 12332321 2013-03-21 13:48:53.651 /er/viewad/13.html
WEB 12332321 2013-03-21 13:49:13.435 /er/viewad/24.html
WEB 12332321 2013-03-21 13:49:35.876 /selectcat/che/
WEB 12332321 2013-03-21 13:49:56.398 /che/viewad/93.html
WEB 12332321 2013-03-21 13:50:03.143 /che/viewad/10.html
WEB 12332321 2013-03-21 13:50:34.265 /home/
WAP 32483923 2013-03-21 23:58:41.123 /m/home/
WAP 32483923 2013-03-21 23:59:16.123 /m/selectcat/fang/
WAP 32483923 2013-03-21 23:59:45.123 /m/fang/33.html
WAP 32483923 2013-03-22 00:00:23.984 /m/fang/54.html
WAP 32483923 2013-03-22 00:00:54.043 /m/selectcat/er/
WAP 32483923 2013-03-22 00:01:16.576 /m/er/49.html
…… …… …… ……
现需要把上述数据处理为如下结构的表ALLOG:
CREATE TABLE ALLOG
(PLATFORM string,
USER_ID int,
SEQ int,
FROM_URL string,
TO_URL string)
row format delimited fields terminated by '\t';
整理后的数据结构:
PLATFORM USER_ID SEQ FROM_URL TO_URL
WEB 12332321 1 NULL /home/
WEB 12332321 2 /home/ /selectcat/er/
WEB 12332321 3 /selectcat/er/ /er/viewad/12.html
WEB 12332321 4 /er/viewad/12.html /er/viewad/13.html
WEB 12332321 5 /er/viewad/13.html /er/viewad/24.html
WEB 12332321 6 /er/viewad/24.html /selectcat/che/
WEB 12332321 7 /selectcat/che/ /che/viewad/93.html
WEB 12332321 8 /che/viewad/93.html /che/viewad/10.html
WEB 12332321 9 /che/viewad/10.html /home/
WAP 32483923 1 NULL /m/home/
WAP 32483923 2 /m/home/ /m/selectcat/fang/
WAP 32483923 3 /m/selectcat/fang/ /m/fang/33.html
WAP 32483923 4 /m/fang/33.html /m/fang/54.html
WAP 32483923 5 /m/fang/54.html /m/selectcat/er/
WAP 32483923 6 /m/selectcat/er/ /m/er/49.html
…… …… …… …… ……
说明:PLATFORM和USER_ID还是代表平台和用户ID;SEQ字段代表用户按时间排序后的访问顺序,FROM_URL和TO_URL分别代表用户从哪一页跳转到哪一页。对于某个平台上某个用户的第一条访问记录,其FROM_URL是NULL(空值)。
解题要求:需要用两种办法做出来:
1、实现一个能加速上述处理过程的Hive Generic UDF,并给出使用此UDF实现ETL过程的Hive SQL。
2、实现基于纯Hive SQL的ETL过程,从TRLOG表生成ALLOG表;(结果是一套hive SQL语句)。
说明:第一题效率一定要高,因为表有2TB,第二题无所谓,只要能用HIVE SQL实现就行。
**********解决思路******************
问题一:写UDF简单,只要自定义一个ROWNUMBER方法,加载到HIVE中就能出结果了。
下面是网友提供的一个JAVA写的RowNumber方法(该方法用于获取“SEQ”列的值(SEQ字段代表用户按时间排序后的访问顺序),仅供参考。
public class RowNumber extends org.apache.hadoop.hive.ql.exec.UDF {
private static int MAX_VALUE = 50;
private static String comparedColumn[] = new String[MAX_VALUE];
private static int rowNum = 1;
public int evaluate(Object... args) {
String columnValue[] = new String[args.length];
for (int i = 0; i < args.length; i++)
columnValue[i] = args[i].toString();
if (rowNum == 1)
{
for (int i = 0; i < columnValue.length; i++)
comparedColumn[i] = columnValue[i];
}
for (int i = 0; i < columnValue.length; i++)
{
if (!comparedColumn[i].equals(columnValue[i]))
{
for (int j = 0; j < columnValue.length; j++)
{
comparedColumn[j] = columnValue[j];
}
rowNum = 1;
return rowNum++;
}
}
return rowNum++;
}
}
把上面这个JAVA类打包,编译成JAR包,比如RowNumber.jar。然后放到Hive的机器上的相应目录下。
然后在HIVE SHELL里执行下面两条语句:
add jar /root/RowNumber.jar; #把RowNumber.jar加载到HIVE的CLASSPATH中
create temporary function row_number as 'RowNumber';
#在HIVE里创建一个新函数,叫row_number ,引用的CLASS 就是JAVA代码里的RowNumber类。
提示成功后,再执行下面这条HIVE SQL语句:
#INSERT OVERWRITE TABLE ALLOG 如果要写入ALLOG表,可以把注释去掉
SELECT t1.platform,t1.user_id,row_number(t1.user_id)seq,t2.click_url FROM_URL,t1.click_url TO_URL FROM
(select *,row_number(user_id)seq from trlog)t1
LEFT OUTER JOIN
(select *,row_number(user_id)seq from trlog)t2
on t1.user_id = t2.user_id and t1.seq = t2.seq + 1;
成功实现!
疑 问:第一题解决了,但有一点不明白T1\T2既然已经有了row_number(user_id)seq,为什么在最外层还要套个row_number(user_id)seq?
牛人回答:第一题中的RN貌似是HIVE转译SQL的BUG,你可以把外层的ROW_NUMBER去掉,用T1的SEQ,就能发现问题了。具体情况还有待分析,有兴趣可以去国外社区查查相关的BUG LIST。
问题解题思路二:
INSERT OVERWRITE TABLE ALLOG
SELECT t1.platform,t1.user_id,t1.seq,t2.click_url FROM_URL,t1.click_url TO_URL FROM
(SELECT platform,user_id,click_time,click_url,count(1) seq FROM (SELECT a.*,b.click_time click_time1,b.click_url click_url2 FROM trlog a left outer join trlog b on a.user_id = b.user_id)t WHERE click_time>=click_time1 GROUP BY platform,user_id,click_time,click_url)t1
LEFT OUTER JOIN
(SELECT platform,user_id,click_time,click_url,count(1) seq FROM (SELECT a.*,b.click_time click_time1,b.click_url click_url2 FROM trlog a left outer join trlog b on a.user_id = b.user_id)t WHERE click_time>=click_time1 GROUP BY platform,user_id,click_time,click_url )t2
on t1.user_id = t2.user_id and t1.seq = t2.seq + 1;
分析说明:这个方法完全没有效率可言,MapReduce JOB最少要跑5次,做实验还行,跑生产环境就免了。