1 基础知识

计算学习理论(computational learning theory):关于通过“计算”来进行“学习”的理论,即关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法体统理论保证,并根据结果指导算法设计。

对于二分类问题,给定样本集

【机器学习】四、计算学习理论_泛化


假设所有样本服从一个隐含未知的分布D DD,所有样本均独立同分布(independent and identically distributed)。令h为样本到{ − 1 , + 1 } 上的一个映射,其泛化误差为

E ( h ; D ) = P x ∼ D ( h ( x ) ≠ y ) E(h;D)=P_{x\sim D}(h(x)\neq y)
E(h;D)=P
x∼D

(h(x)


=y)

h在D 的经验误差为

【机器学习】四、计算学习理论_学习_02

由于D是D的独立同分布采样,因此h hh的经验误差的期望等于其泛化误差。 在上下文明确时,我们将E ( h ; D ) 和E ^ ( h ; D ) 分别简记为E ( h )和E ^ ( h ) 。 令ϵ为E ( h ) 的上限,即E ( h ) ≤ ϵ E(h);我们通常用ϵ表示预先设定的学得模型所应满足的误差要求,亦称“误差参数”。

我们将研究经验误差和泛化误差之间的逼近程度;若h在数据集上的经验误差为0,则称h与D一致,否则称其不一致。对于任意两个映射h 1 , h 2 ∈ X → Y h_1,h_2,用不合(disagreement)来度量他们之间的差别:
d ( h 1 , h 2 ) = P x ∼ D ( h 1 ( x ) ≠ h 2 ( x ) )
我们将会用到几个常见的不等式:

Jensen不等式:对任意凸函数,有

f ( E ( X ) ) ≠ E ( f ( x ) ) f(E(X))\neq E(f(x))
f(E(X))


=E(f(x))

Hoeffding不等式:若x 1 , x 2 , … , x m

为m 个独立随机变量,且满足0 ≤ x i ≤ 1,对任意ϵ > 0,有

【机器学习】四、计算学习理论_学习_03

McDiarmid不等式:

【机器学习】四、计算学习理论_人工智能_04

2 PAC学习

概率近似正确理论(Probably Approximately Correct,PAC):

首先介绍两个概念:

C:概念类。表示从样本空间到标记空间的映射,对任意样例,都能使得c ( x ) = y 。
H :假设类。学习算法会把认为可能的目标概念集中起来构成H。
若c ∈ H ,则说明假设能将所有示例按真实标记一致的方式完全分开,称为该问题对学习算法而言是”可分的“;否则,称为”不可分的“
对于训练集,我们希望学习算法学习到的模型所对应的假设h hh尽可能接近目标概念c。我们是希望以比较大的把握学得比较好的模型,也就是说,以较大的概率学得误差满足预设上限的模型,这就是"概率近似正确"的含义。形式化地说,令δ 表示置信度,可定义:

PAC辨识:对0 ≤ ϵ , δ < 1 ,所有的c ∈ C 和分布D ,若存在学习算法,其输出假设h ∈ H 满足:

P ( E ( h ) ≤ ϵ ) ≥ 1 − δ P(E(h)\le \epsilon)\ge 1- \delta
P(E(h)≤ϵ)≥1−δ

【机器学习】四、计算学习理论_泛化_05

PAC学习中一个关键因素是假设空间H的复杂度。H包含了学习算法所有可能输出的假设,若在PAC学习中假设空间与概念类完全相同,即H=C,这称为"恰PAC可学习" (properly PAC learnable)。直观地看,这意味着学习算法的能力与学习任务”恰好匹配“。
然而,这种让所有候选假设都来自概念类的要求看似合理,但却并不实际,因为在现实应用中我们对概念类C CC通常一无所知,更别说获得一个假设空间与概念类恰好相同的学习算法。显然,更重要的是研究假设空间与概念类不同的情形,即H ≠ C H\neq CH


=C。 一般而言,H HH越大,其包含任意目标概念的可能性越大,但从中找到某个具体目标概念的难度也越大。∣ H ∣ |H|∣H∣有限时,我们称究为"有限假设空间",否则称为"无限假设空间"。

3 有限假设空间

3.1 可分情形

【机器学习】四、计算学习理论_学习_06

3.2 不可分情形

【机器学习】四、计算学习理论_泛化_07

4 VC维

【机器学习】四、计算学习理论_数据集_08

5 Rademacher复杂度

【机器学习】四、计算学习理论_人工智能_09

6 稳定性

【机器学习】四、计算学习理论_人工智能_10

【机器学习】四、计算学习理论_数据集_11