在前面的博客已经介绍过多元回归模型,现在这里粗略介绍如下

python多维向量转二维向量 python多维lstm_模型评估

python 实现案例
1、选取数据

python多维向量转二维向量 python多维lstm_python多维向量转二维向量_02


执行代码

#!usr/bin/env python
#_*_ coding:utf-8 _*_
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib as mpl   #显示中文
def mul_lr():
    pd_data=pd.read_excel('C:\\Users\\lenovo\\Desktop\\test.xlsx')
    print('pd_data.head(10)=\n{}'.format(pd_data.head(10)))
mpl.rcParams['font.sans-serif'] = ['SimHei']  #配置显示中文,否则乱码
mpl.rcParams['axes.unicode_minus']=False #用来正常显示负号,如果是plt画图,则将mlp换成plt
sns.pairplot(pd_data, x_vars=['中证500','泸深300','上证50','上证180'], y_vars='上证指数',kind="reg", size=5, aspect=0.7)
plt.show()#注意必须加上这一句,否则无法显示。

python多维向量转二维向量 python多维lstm_python多维向量转二维向量_03

添加参数kind=”reg”结果,关于画图方面可[参考连接]

python多维向量转二维向量 python多维lstm_预测_04


#####2、构建训练集与测试级,并构建模型

from sklearn.model_selection import train_test_split #这里是引用了交叉验证
from sklearn.linear_model import LinearRegression  #线性回归
from sklearn import metrics
import numpy as np
import matplotlib.pyplot as plt
def mul_lr():   #续前面代码
    #剔除日期数据,一般没有这列可不执行,选取以下数据
    X=pd_data.loc[:,('中证500','泸深300','上证50','上证180')]
    y=pd_data.loc[:,'上证指数']
    X_train,X_test, y_train, y_test = train_test_split(X,y,test_size = 0.2,random_state=100)
    print ('X_train.shape={}\n y_train.shape ={}\n X_test.shape={}\n,  y_test.shape={}'.format(X_train.shape,y_train.shape, X_test.shape,y_test.shape))
    linreg = LinearRegression()
    model=linreg.fit(X_train, y_train)
    print (model)
    # 训练后模型截距
    print (linreg.intercept_)
    # 训练后模型权重(特征个数无变化)
    print (linreg.coef_)

python多维向量转二维向量 python多维lstm_python多维向量转二维向量_05

feature_cols = ['中证500','泸深300','上证50','上证180','上证指数']
    B=list(zip(feature_cols,linreg.coef_))
    print(B)

python多维向量转二维向量 python多维lstm_回归分析检验_06

3、模型预测
#预测
    y_pred = linreg.predict(X_test)
    print (y_pred) #10个变量的预测结果

python多维向量转二维向量 python多维lstm_预测_07

4、模型评估
#评价
    #(1) 评价测度
    # 对于分类问题,评价测度是准确率,但这种方法不适用于回归问题。我们使用针对连续数值的评价测度(evaluation metrics)。
    # 这里介绍3种常用的针对线性回归的测度。
    # 1)平均绝对误差(Mean Absolute Error, MAE)
    # (2)均方误差(Mean Squared Error, MSE)
    # (3)均方根误差(Root Mean Squared Error, RMSE)
    # 这里我使用RMES。
    sum_mean=0
    for i in range(len(y_pred)):
        sum_mean+=(y_pred[i]-y_test.values[i])**2
    sum_erro=np.sqrt(sum_mean/10)  #这个10是你测试级的数量
    # calculate RMSE by hand
    print ("RMSE by hand:",sum_erro)
    #做ROC曲线
    plt.figure()
      plt.plot(range(len(y_pred)),y_pred,'b',label="predict")
     plt.plot(range(len(y_pred)),y_test,'r',label="test")
    plt.legend(loc="upper right") #显示图中的标签
    plt.xlabel("the number of sales")
    plt.ylabel('value of sales')
    plt.show()

python多维向量转二维向量 python多维lstm_python_08

附录:

相应的参数说明。
fit_intercept: 布尔型,默认为true
说明:是否对训练数据进行中心化。如果该变量为false,则表明输入的数据已经进行了中心化,在下面的过程里不进行中心化处理;否则,对输入的训练数据进行中心化处理
normalize布尔型,默认为false
说明:是否对数据进行标准化处理
copy_X 布尔型,默认为true
说明:是否对X复制,如果选择false,则直接对原数据进行覆盖。(即经过中心化,标准化后,是否把新数据覆盖到原数据上)
**n_jobs整型, 默认为1
说明:计算时设置的任务个数(number of jobs)。如果选择-1则代表使用所有的CPU。这一参数的对于目标个数>1(n_targets>1)且足够大规模的问题有加速作用。
返回值:

coef_ 数组型变量, 形状为(n_features,)或(n_targets, n_features)
说明:对于线性回归问题计算得到的feature的系数。如果输入的是多目标问题,则返回一个二维数组(n_targets, n_features);如果是单目标问题,返回一个一维数组 (n_features,)。
intercept_ 数组型变量
说明:线性模型中的独立项。

注:该算法仅仅是scipy.linalg.lstsq经过封装后的估计器。

方法:

decision_function(X) 对训练数据X进行预测 
 fit(X, y[, n_jobs]) 对训练集X, y进行训练。是对scipy.linalg.lstsq的封装 
 get_params([deep]) 得到该估计器(estimator)的参数。 
 predict(X) 使用训练得到的估计器对输入为X的集合进行预测(X可以是测试集,也可以是需要预测的数据)。 
 score(X, y[,]sample_weight) 返回对于以X为samples,以y为target的预测效果评分。 
 set_params(**params) 设置估计器的参数decision_function(X) 和predict(X)都是利用预估器对训练数据X进行预测,其中decision_function(X)包含了对输入数据的类型检查,以及当前对象是否存在coef_属性的检查,是一种“安全的”方法,而predict是对decision_function的调用。
score(X, y[,]sample_weight) 定义为(1-u/v),其中u = ((y_true - y_pred)**2).sum(),而v=((y_true-y_true.mean())**2).mean()


最好的得分为1.0,一般的得分都比1.0低,得分越低代表结果越差。
其中sample_weight为(samples_n,)形状的向量,可以指定对于某些sample的权值,如果觉得某些数据比较重要,可以将其的权值设置的大一些。

例子:

from sklearn import linear_model
clf = linear_model.LinearRegression()
clf.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
clf.coef_
array([ 0.5,  0.5])

参数官网说明