不套路直接送端午节假期到了,这正是内卷的好时候文末抽奖送算法书|漫画:寻找无序数组的第k大元素_算法

借着假期胖哥送你本算法书给你加强一下算法,让你成为卷王之王文末抽奖送算法书|漫画:寻找无序数组的第k大元素_快速排序_02


文末抽奖送算法书|漫画:寻找无序数组的第k大元素_算法_03

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_快速排序_04

—————  第二天  —————

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_数据结构_05

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_快速排序_06

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_快速排序_07

题目是什么意思呢?比如给定的无序数组如下:

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_堆排序_08

如果 k=6,也就是要寻找第6大的元素,这个元素是哪一个呢?

显然,数组中第一大的元素是24,第二大的元素是20,第三大的元素是17 ...... ​第6大的元素是9​。

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_算法_09

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_算法_10

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_算法_11

方法一:排序法

这是最容易想到的方法,先把无序数组从大到小进行排序,排序后的第k个元素,自然就是数组中的第k大元素。

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_快速排序_12

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_算法_13

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_数据结构_14

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_数据结构_15

方法二:插入法

维护一个长度为k的数组A的有序数组,用于存储已知的k个较大的元素。

接下来遍历原数组,每遍历到一个元素,和数组A中最小的元素相比较,如果小于等于数组A的最小元素,继续遍历;如果大于数组A的最小元素,则插入到数组A中,并把曾经的最小元素“挤出去”。

比如k=3,先把最左侧的7,5,15三个数有序放入数组A当中,代表当前最大的三个数。

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_排序算法_16

这时候,遍历到3, 由于3<5,继续遍历。

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_快速排序_17

接下来遍历到17,由于17>5,插入到数组A的合适位置,类似于插入排序,并把原先最小的元素5“挤出去”。

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_堆排序_18

继续遍历原数组,一直遍历到数组的最后一个元素......

最终,数组A中存储的元素是24,20,17,代表着整个数组中最大的3个元素。此时数组A中的最小的元素17就是我们要寻找的第k大元素。

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_排序算法_19

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_数据结构_20

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_快速排序_21

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_快速排序_22

————————————

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_数据结构_23

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_算法_24

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_数据结构_25

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_数据结构_26

什么是二叉堆?不太了解的小伙伴可以先看看这一篇:​​漫画:什么是二叉堆?(修正版)​

简而言之,二叉堆是一种特殊的完全二叉树,它包含大顶堆和小顶堆两种形式。

其中小顶堆的特点,是每一个父节点都大于等于自己的子节点。要解决这个算法题,我们可以利用​小顶堆​的特性。

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_算法_27

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_排序算法_28

方法三:小顶堆法

维护一个容量为k的小顶堆,堆中的k个节点代表着​当前最大的k个元素​,而堆顶显然是这k个元素中的​最小值​。

遍历原数组,每遍历一个元素,就和堆顶比较,如果当前元素小于等于堆顶,则继续遍历;如果元素大于堆顶,则把当前元素放在堆顶位置,并调整二叉堆(下沉操作)。

遍历结束后,堆顶就是数组的​最大k个元素中的最小值​,也就是​第k大元素​。

假设k=5,具体的执行步骤如下:

1.把数组的前k个元素构建成堆。

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_排序算法_29

2.继续遍历数组,和堆顶比较,如果小于等于堆顶,则继续遍历;如果大于堆顶,则取代堆顶元素并调整堆。

遍历到元素2,由于 2<3,所以继续遍历。

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_数据结构_30

遍历到元素20,由于 20>3,20取代堆顶位置,并调整堆。

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_堆排序_31

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_快速排序_32

遍历到元素24,由于 24>5,24取代堆顶位置,并调整堆。

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_排序算法_33

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_数据结构_34

以此类推,我们一个一个遍历元素,当遍历到最后一个元素8的时候,小顶堆的情况如下:

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_快速排序_35

3.此时的堆顶,就是堆中的最小值,也就是数组中的第k大元素。

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_数据结构_36

这个方法的时间复杂度是多少呢?

1.构建堆的时间复杂度是 O(k)

2.遍历剩余数组的时间复杂度是O(n-k)

3.每次调整堆的时间复杂度是 O(logk)

其中2和3是嵌套关系,1和2,3是并列关系,所以总的最坏时间复杂度是​O((n-k)logk + k)​。当k远小于n的情况下,也可以近似地认为是​O(nlogk)​。

这个方法的空间复杂度是多少呢?

刚才我们在详细步骤中把二叉堆单独拿出来演示,是为了便于理解。但如果允许改变原数组的话,我们可以把数组的前k个元素“原地交换”来构建成二叉堆,这样就免去了开辟额外的存储空间。

因此,方法的空间复杂度是​O(1)​。

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_排序算法_37

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_算法_38

/**
* 寻找第k大的元素
* @param array 待调整的堆
* @param k 第几大
*/
public static int findNumberK(int[] array, int k){
//1.用前k个元素构建小顶堆
buildHeap(array, k);
//2.继续遍历数组,和堆顶比较
for(int i=k; i<array.length;i++){
if(array[i] > array[0]){
array[0] = array[i];
downAdjust(array, 0, k);
}
}
//3.返回堆顶元素
return array[0];
}

/**
* 构建堆
* @param array 待调整的堆
* @param length 堆的有效大小
*/
private static void buildHeap(int[] array, int length) {
// 从最后一个非叶子节点开始,依次下沉调整
for (int i = (length-2)/2; i >= 0; i--) {
downAdjust(array, i, length);
}
}

/**
* 下沉调整
* @param array 待调整的堆
* @param index 要下沉的节点
* @param length 堆的有效大小
*/
private static void downAdjust(int[] array, int index, int length) {
// temp保存父节点值,用于最后的赋值
int temp = array[index];
int childIndex = 2 * index + 1;
while (childIndex < length) {
// 如果有右孩子,且右孩子小于左孩子的值,则定位到右孩子
if (childIndex + 1 < length && array[childIndex + 1] < array[childIndex]) {
childIndex++;
}
// 如果父节点小于任何一个孩子的值,直接跳出
if (temp <= array[childIndex])
break;
//无需真正交换,单向赋值即可
array[index] = array[childIndex];
index = childIndex;
childIndex = 2 * childIndex + 1;
}
array[index] = temp;
}

public static void main(String[] args) {
int[] array = new int[] {7,5,15,3,17,2,20,24,1,9,12,8};
System.out.println(findNumberK(array, 5));
}

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_堆排序_39

方法四:分治法

大家都了解快速排序,快速排序利用分治法,每一次把数组分成较大和较小的两部分。

我们在寻找第k大元素的时候,也可以利用这个思路,以某个元素A为基准,把大于于A的元素都交换到数组左边,小于A的元素都交换到数组右边。

比如我们选择以元素7作为基准,把数组分成了左侧较大,右侧较小的两个区域,交换结果如下:

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_堆排序_40

包括元素7在内的较大元素有8个,但我们的k=5,显然较大元素的数目过多了。于是我们在较大元素的区域继续分治,这次以元素12位基准:

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_算法_41

这样一来,包括元素12在内的较大元素有5个,正好和k相等。所以,基准元素12就是我们所求的。

这就是分治法的大体思想,这种方法的时间复杂度甚至优于小顶堆法,可以达到​O(n)​。有兴趣的小伙伴可以尝试用代码实现一下。

文末抽奖送算法书|漫画:寻找无序数组的第k大元素_快速排序_42