支持等连接,外连接,左半连接。hive不支持非相等的join条件(通过其他方式实现,如left outer join),因为它很难在map/reduce job实现这样的条件。而且,hive可以join两个以上的表。
同个查询,可以join两个以上的表
Sql代码
1. SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
join的缓存和任务转换
hive转换多表join时,如果每个表在join字句中,使用的都是同一个列,只会转换为一个单独的map/reduce。
Sql代码
1. SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)
这个会转换为单独的map/reduce任务,只有b表的key1列在join被调用。
另一方面
Sql代码
1. SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
被转换为两个map/reduce任务,因为b的key1列在第一个join条件使用,而b表的key2列在第二个join条件使用。第一个map/reduce任务join a和b。第二个任务是第一个任务的结果join c。
表连接顺序优化
多表连接,会转换成多个MR Job,每一个MR Job在Hive中称为JOIN阶段(Stage)。在每一个Stage,按照JOIN顺序中的最后一个表应该尽量是大表,因为JOIN前一阶段生成的数据会存在于Reducer的buffer中,通过stream最后面的表,直接从Reducer的buffer中读取已经缓冲的中间结果数据(这个中间结果数据可能是JOIN顺序中,前面表连接的结果的Key,数据量相对较小,内存开销就小),这样,与后面的大表进行连接时,只需要从buffer中读取缓存的Key,与大表中的指定Key进行连接,速度会更快,也可能避免内存缓冲区溢出。例如:
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)
这个JOIN语句,会生成一个MR Job,在选择JOIN顺序的时候,数据量相比应该是b < c,表a和b基于a.key = b.key1进行连接,得到的结果(基于a和b进行连接的Key)会在Reducer上缓存在buffer中,在与c进行连接时,从buffer中读取Key(a.key=b.key1)来与表c的c.key进行连接。
另外,也可以通过给出一些Hint信息来启发JOIN操作,这指定了将哪个表作为大表,从而得到优化。例如:
SELECT /*+ STREAMTABLE(a) */ a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN cON (c.key = b.key1)
上述JOIN语句中,a表被视为大表,则首先会对表b和c进行JOIN,然后再将得到的结果与表a进行JOIN。
基于条件的LEFT OUTER JOIN优化
左连接时,左表中出现的JOIN字段都保留,右表没有连接上的都为空。对于带WHERE条件的JOIN语句,例如:
SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key)
WHERE a.ds='2009-07-07' AND b.ds='2009-07-07'
执行顺序是,首先完成2表JOIN,然后再通过WHERE条件进行过滤,这样在JOIN过程中可能会输出大量结果,再对这些结果进行过滤,比较耗时。可以进行优化,将WHERE条件放在ON后,例如:
SELECT a.val, b.val FROM a LEFT OUTER JOIN b
ON (a.key=b.key AND b.ds='2009-07-07' AND a.ds='2009-07-07')
这样,在JOIN的过程中,就对不满足条件的记录进行了预先过滤,可能会有更好的表现。
Map SideJOIN
Map Side JOIN优化的出发点是,Map任务输出后,不需要将数据拷贝到Reducer节点,降低的数据在网络节点之间传输的开销。
多表连接,如果只有一个表比较大,其他表都很小,则JOIN操作会转换成一个只包含Map的Job,例如:
SELECT /*+ MAPJOIN(b) */ a.key, a.value FROM a JOIN b ON a.key = b.key
原理是将其中一张join表放到每个mapper任务的内存中,从而不用reducer任务,在mapper中就完成join。Map side join不适合FULL/RIGHT OUTER JOIN,理由大家思考下。
示例:
SELECT /*+ MAPJOIN(b) */ a.key, a.value FROM a join b ona.key = b.key