本文主要参考英文教材Python Machine Learning第二章。pdf文档下载链接: https://pan.baidu.com/s/1nuS07Qp 密码: gcb9。
本文主要内容包括利用Python实现一个感知机模型并利用这个感知机模型完成一个分类任务。
Warren和McCullock于1943年首次提出MCP neuron神经元模型[1],之后,Frank Rosenblatt在MCP neuron model的基础之上提出了感知机Perceptron模型[2]。具体细节请阅读教材第二章。
采用面向对象的方法编写一个感知机接口,这样就可以初始化一个新的感知机对象,这个对象可以通过fit()方法从数据中学习参数,通过predict()方法做预测。下面通过代码来讲解实现过程:
import numpy as np
class Perceptron(object):
"""Perceptron classifier.
Parameters
------------
eta:float,Learning rate (between 0.0 and 1.0)
n_iter:int,Passes over the training dataset.
Attributes
-------------
w_: 1d-array,Weights after fitting.
errors_: list,Numebr of misclassifications in every epoch.
"""
def __init__(self,eta=0.01,n_iter=10):
self.eta = eta
self.n_iter = n_iter
def fit(self,X,y):
"""Fit training data.先对权重参数初始化,然后对训练集中每一个样本循环,根据感知机算法学习规则对权重进行更新
Parameters
------------
X: {array-like}, shape=[n_samples, n_features]
Training vectors, where n_samples is the number of samples and n_featuers is the number of features.
y: array-like, shape=[n_smaples]
Target values.
Returns
----------
self: object
"""
self.w_ = np.zeros(1 + X.shape[1]) # add w_0
#初始化权重。数据集特征维数+1。
self.errors_ = []#用于记录每一轮中误分类的样本数
for _ in range(self.n_iter):
errors = 0
for xi, target in zip(X,y):
update = self.eta * (target - self.predict(xi))#调用了predict()函数
self.w_[1:] += update * xi
self.w_[0] += update
errors += int(update != 0.0)
self.errors_.append(errors)
return self
def net_input(self,X):
"""calculate net input"""
return np.dot(X,self.w_[1:]) + self.w_[0]#计算向量点乘
def predict(self,X):#预测类别标记
"""return class label after unit step"""
return np.where(self.net_input(X) >= 0.0,1,-1)
接下来使用鸢尾花Iris数据集来训练感知机模型。加载两类花:Setosa和Versicolor。属性选定为:sepal length和petal length。当然,不局限于两个属性。我们可通过One-vs-All(OvA)或One-vs-Rest(OvR)技术讲二分类扩展到多分类的情形。
import pandas as pd#用pandas读取数据
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import ListedColormap
from Perceptron_1 import Perceptron
df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data',header=None)#读取数据还可以用request这个包
print(df.tail())#输出最后五行数据,看一下Iris数据集格式
"""抽取出前100条样本,这正好是Setosa和Versicolor对应的样本,我们将Versicolor
对应的数据作为类别1,Setosa对应的作为-1。对于特征,我们抽取出sepal length和petal
length两维度特征,然后用散点图对数据进行可视化"""
y = df.iloc[0:100,4].values
y = np.where(y == 'Iris-setosa',-1,1)
X = df.iloc[0:100,[0,2]].values
plt.scatter(X[:50,0],X[:50,1],color = 'red',marker='o',label='setosa')
plt.scatter(X[50:100,0],X[50:100,1],color='blue',marker='x',label='versicolor')
plt.xlabel('petal length')
plt.ylabel('sepal lenght')
plt.legend(loc='upper left')
plt.show()
#train our perceptron model now
#为了更好地了解感知机训练过程,我们将每一轮的误分类
#数目可视化出来,检查算法是否收敛和找到分界线
ppn=Perceptron(eta=0.1,n_iter=10)
ppn.fit(X,y)
plt.plot(range(1,len(ppn.errors_)+1),ppn.errors_,marker='o')
plt.xlabel('Epoches')
plt.ylabel('Number of misclassifications')
plt.show()
#画分界线超平面
def plot_decision_region(X,y,classifier,resolution=0.02):
#setup marker generator and color map
markers=('s','x','o','^','v')
colors=('red','blue','lightgreen','gray','cyan')
cmap=ListedColormap(colors[:len(np.unique(y))])
#plot the desicion surface
x1_min,x1_max=X[:,0].min()-1,X[:,0].max()+1
x2_min,x2_max=X[:,1].min()-1,X[:,1].max()+1
xx1,xx2=np.meshgrid(np.arange(x1_min,x1_max,resolution),
np.arange(x2_min,x2_max,resolution))
Z=classifier.predict(np.array([xx1.ravel(),xx2.ravel()]).T)
Z=Z.reshape(xx1.shape)
plt.contour(xx1,xx2,Z,alpha=0.4,cmap=cmap)
plt.xlim(xx1.min(),xx1.max())
plt.ylim(xx2.min(),xx2.max())
#plot class samples
for idx,cl in enumerate(np.unique(y)):
plt.scatter(x=X[y==cl,0],y=X[y==cl,1],alpha=0.8,c=cmap(idx), marker=markers[idx],label=cl)
plot_decision_region(X,y,classifier=ppn)
plt.xlabel('sepal length [cm]')
plt.ylabel('petal length [cm]')
plt.legend(loc='upperleft')
plt.show()
结果如下图:
若两类模式是线性可分的,即存在一个线性超平面能将它们分开,则感知机的学习过程一定会收敛converge而求得适当的权向量;否则感知机学习过程就会发生振荡fluctuation,权重向量难以稳定下来,不能求得合适解,具体的证明过程见文章[3]
代码中用到NumPy、Pandas和Matplotlib库,不熟悉的可以通过如下链接学习。
NumPy: http://wiki.scipy.org/Tentative_NumPy_Tutorial
Pandas: http://pandas.pydata.org/pandas-docs/stable/tutorials.html
Matplotlib: http://matplotlib.org/users/beginner.html
References:
[1] W. S. McCulloch and W. Pitts. A Logical Calculus of the Ideas Immanent in Nervous Activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943
[2] F. Rosenblatt, The Perceptron, a Perceiving and Recognizing Automaton. Cornell Aeronautical Laboratory, 1957
[3] Minsky, M. and S. Papert. (1969). Perceptrons. MIT Press, Cambridge, MA.