注意中文路径opencv_python读取图片,imread()会读取失败,使用下面方式读取中文路径图片。

img = cv2.imdecode(np.fromfile(img_path, dtype=np.uint8), -1)  # 读入完整图片,见下面解释
img = cv2.imdecode(np.fromfile(img_path, dtype=np.uint8), 0)  # 读成灰度
img = cv2.imdecode(np.fromfile(img_path, dtype=np.uint8), 1)  # 读成彩图

其中cv2.imdecode后面的flag -1应该是和cv2.imread一样的。

使用函数cv2.imread(filepath, flags)读入一幅图片:

filepath: 要读入图片的路径。

flags: 读入图片的标志:

  cv2.IMREAD_UNCHANGED(-1): 顾名思义,读入完整图片,包括alpha通道。如果数据不含alpha通道则灰图读成(H, W),彩图读成(H, W, 3)。

  cv2.IMREAD_GRAYSCALE(0): 读入灰度图片,形状为(H, W)。彩图也读成灰的形状。

  cv2.IMREAD_COLOR(1): 默认参数, 读入一幅彩色图片,忽略alpha通道, 形状为(H, W, 3)。灰图也读成彩的形状。

有alpha通道的图片还没试验,不过看来读成-1比较稳妥。

 

yolo定位 单张调用

# detect.py

import cv2
import numpy as np
import os
import time


def yolo_detect(pathIn='',
                pathOut=None,
                label_path='./cfg/obj.names',
                config_path='./cfg/yolo.cfg',
                weights_path='./cfg/yolo_best.weights',
                confidence_thre=0.5,
                nms_thre=0.3,
                jpg_quality=80):
    '''
    pathIn:原始图片的路径
    pathOut:结果图片的路径
    label_path:类别标签文件的路径
    config_path:模型配置文件的路径
    weights_path:模型权重文件的路径
    confidence_thre:0-1,置信度(概率/打分)阈值,即保留概率大于这个值的边界框,默认为0.5
    nms_thre:非极大值抑制的阈值,默认为0.3
    jpg_quality:设定输出图片的质量,范围为0到100,默认为80,越大质量越好
    '''

    # 加载类别标签文件
    LABELS = open(label_path).read().strip().split("\n")
    nclass = len(LABELS)

    # 为每个类别的边界框随机匹配相应颜色
    np.random.seed(42)
    COLORS = np.random.randint(0, 255, size=(nclass, 3), dtype='uint8')

    # 载入图片并获取其维度
    base_path = os.path.basename(pathIn)
    img = cv2.imread(pathIn)
    (H, W) = img.shape[:2]

    # 加载模型配置和权重文件
    print('从硬盘加载YOLO......')
    net = cv2.dnn.readNetFromDarknet(config_path, weights_path)

    # 获取YOLO输出层的名字
    ln = net.getLayerNames()
    ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]

    # 将图片构建成一个blob,设置图片尺寸,然后执行一次
    # YOLO前馈网络计算,最终获取边界框和相应概率
    blob = cv2.dnn.blobFromImage(img, 1 / 255.0, (416, 416), swapRB=True, crop=False)
    net.setInput(blob)
    start = time.time()
    layerOutputs = net.forward(ln)
    end = time.time()

    # 显示预测所花费时间
    print('YOLO模型花费 {:.2f} 秒来预测一张图片'.format(end - start))

    # 初始化边界框,置信度(概率)以及类别
    boxes = []
    confidences = []
    classIDs = []

    # 迭代每个输出层,总共三个
    for output in layerOutputs:
        # 迭代每个检测
        for detection in output:
            # 提取类别ID和置信度
            scores = detection[5:]
            classID = np.argmax(scores)
            confidence = scores[classID]

            # 只保留置信度大于某值的边界框
            if confidence > confidence_thre:
                # 将边界框的坐标还原至与原图片相匹配,记住YOLO返回的是
                # 边界框的中心坐标以及边界框的宽度和高度
                box = detection[0:4] * np.array([W, H, W, H])
                (centerX, centerY, width, height) = box.astype("int")

                # 计算边界框的左上角位置
                x = int(centerX - (width / 2))
                y = int(centerY - (height / 2))

                # 更新边界框,置信度(概率)以及类别
                boxes.append([x, y, int(width), int(height)])
                confidences.append(float(confidence))
                classIDs.append(classID)

    # 使用非极大值抑制方法抑制弱、重叠边界框
    idxs = cv2.dnn.NMSBoxes(boxes, confidences, confidence_thre, nms_thre)

    # 确保至少一个边界框
    if len(idxs) > 0:
        # 迭代每个边界框
        for i in idxs.flatten():
            # 提取边界框的坐标
            (x, y) = (boxes[i][0], boxes[i][1])
            (w, h) = (boxes[i][2], boxes[i][3])

            # 绘制边界框以及在左上角添加类别标签和置信度
            color = [int(c) for c in COLORS[classIDs[i]]]
            cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
            text = '{}: {:.3f}'.format(LABELS[classIDs[i]], confidences[i])
            (text_w, text_h), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2)
            cv2.rectangle(img, (x, y - text_h - baseline), (x + text_w, y), color, -1)
            cv2.putText(img, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2)

    # 输出结果图片
    if pathOut is None:
        cv2.imwrite('with_box_' + base_path, img, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality])
    else:
        cv2.imwrite(pathOut, img, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality])


if __name__ == "__main__":
    pathIn = './test/test1.jpg'
    pathOut = './results/test1.jpg'

    # 调用
    yolo_detect(pathIn, pathOut)

yolo定位批量

import cv2
import numpy as np
import os
import time

print('从硬盘加载YOLO......')
label_path = './cfg/obj.names'
config_path = './cfg/yolo.cfg'
weights_path = './cfg/yolo_best.weights'
net = cv2.dnn.readNetFromDarknet(config_path, weights_path)

# 创建保存结果的目录
if not os.path.exists('results'):
    os.mkdir('results')


def yolo_detect(pathIn='',
                label_path=label_path,
                net=net,
                confidence_thre=0.5,
                nms_thre=0.3,
                jpg_quality=80):
    '''
    pathIn:原始图片的路径
    pathOut:结果图片的路径
    label_path:类别标签文件的路径
    config_path:模型配置文件的路径
    weights_path:模型权重文件的路径
    confidence_thre:0-1,置信度(概率/打分)阈值,即保留概率大于这个值的边界框,默认为0.5
    nms_thre:非极大值抑制的阈值,默认为0.3
    jpg_quality:设定输出图片的质量,范围为0到100,默认为80,越大质量越好
    '''

    # 加载类别标签文件
    LABELS = open(label_path).read().strip().split("\n")
    nclass = len(LABELS)

    # 为每个类别的边界框随机匹配相应颜色
    np.random.seed(42)
    COLORS = np.random.randint(0, 255, size=(nclass, 3), dtype='uint8')

    # 载入图片并获取其维度
    base_path = os.path.basename(pathIn)
    # img = cv2.imread(pathIn)
    img = cv2.imdecode(np.fromfile(pathIn, dtype=np.uint8), 1)
    (H, W) = img.shape[:2]

    # 加载模型配置和权重文件

    # 获取YOLO输出层的名字
    ln = net.getLayerNames()
    ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]

    # 将图片构建成一个blob,设置图片尺寸,然后执行一次
    # YOLO前馈网络计算,最终获取边界框和相应概率
    blob = cv2.dnn.blobFromImage(img, 1 / 255.0, (416, 416), swapRB=True, crop=False)
    net.setInput(blob)
    start = time.time()
    layerOutputs = net.forward(ln)
    end = time.time()

    # 显示预测所花费时间
    print('YOLO模型花费 {:.2f} 秒来预测一张图片'.format(end - start))

    # 初始化边界框,置信度(概率)以及类别
    boxes = []
    confidences = []
    classIDs = []

    # 迭代每个输出层,总共三个
    for output in layerOutputs:
        # 迭代每个检测
        for detection in output:
            # 提取类别ID和置信度
            scores = detection[5:]
            classID = np.argmax(scores)
            confidence = scores[classID]

            # 只保留置信度大于某值的边界框
            if confidence > confidence_thre:
                # 将边界框的坐标还原至与原图片相匹配,记住YOLO返回的是
                # 边界框的中心坐标以及边界框的宽度和高度
                box = detection[0:4] * np.array([W, H, W, H])
                (centerX, centerY, width, height) = box.astype("int")

                # 计算边界框的左上角位置
                x = int(centerX - (width / 2))
                y = int(centerY - (height / 2))

                # 更新边界框,置信度(概率)以及类别
                boxes.append([x, y, int(width), int(height)])
                confidences.append(float(confidence))
                classIDs.append(classID)

    # 使用非极大值抑制方法抑制弱、重叠边界框
    idxs = cv2.dnn.NMSBoxes(boxes, confidences, confidence_thre, nms_thre)

    # 确保至少一个边界框
    if len(idxs) > 0:
        # 迭代每个边界框
        for i in idxs.flatten():
            # 提取边界框的坐标
            (x, y) = (boxes[i][0], boxes[i][1])
            (w, h) = (boxes[i][2], boxes[i][3])

            # 绘制边界框以及在左上角添加类别标签和置信度
            color = [int(c) for c in COLORS[classIDs[i]]]
            cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
            text = '{}: {:.3f}'.format(LABELS[classIDs[i]], confidences[i])
            (text_w, text_h), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2)
            cv2.rectangle(img, (x, y - text_h - baseline), (x + text_w, y), color, -1)
            cv2.putText(img, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2)

    # 输出结果图片
    if not os.path.exists('results'):
        os.mkdir('results')

    cv2.imwrite(os.path.join('results', base_path), img, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality])


def get_file_list(path, suffix):
    Filelist = []
    for home, dirs, files in os.walk(path):
        for filename in files:
            if filename.endswith(suffix):
                Filelist.append(os.path.join(home, filename))
    return Filelist


if __name__ == "__main__":
    '''
        实现对test目录下图片进行推理预测,并将结果保存在results下
    '''
    dir = r"test"
    Filelist = get_file_list(dir, ".jpg")
    print(len(Filelist))
    for filename in Filelist:
        print(filename)
        yolo_detect(filename, jpg_quality=100)

 

参考:PYTHON下使用CV2调用DARKNET