MR-2.MapReduce序列化&反序列化&MapReduce函数
精选
原创
©著作权归作者所有:来自51CTO博客作者艾文编程的原创作品,请联系作者获取转载授权,否则将追究法律责任
MapReduce序列化和反序列化
序列化(Serialization)是指把结构化对象转化为字节流。
反序列化(Deserialization)是序列化的逆过程。即把字节流转回结构化对象。
Hadoop的序列化格式:Writable
序列化在分布式环境的两大作用:进程间通信,永久存储。
Writable接口, 有两个方法分别为write和readFields,分别根据 DataInput 和 DataOutput 实现的简单、有效的序列化对象.
MR的任意key必须实现WritableComparable接口
MapReduce类型
MapReduce的数据出来模型比较简单,map和reduce函数的输入和输出都是k/v键值对。
Hadoop2.x中的MapReduce中的开发job中的setMapperClass和setReducerClass设置自己的函数,其中默认的类别分别为Mapper和Reducer,整理功能就是不做任何处理,对每行记录直接输出。
Map函数
public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
/**
* The <code>Context</code> MapContextImpl 来实现,context对象发送k/v
*/
public abstract class Context
implements MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
}
/**
* MapTask任务开始时仅被调用一次
*/
protected void setup(Context context
) throws IOException, InterruptedException {
// NOTHING
}
/**
* 每个inputsplit中的每个k/v都被调用
*/
@SuppressWarnings("unchecked")
protected void map(KEYIN key, VALUEIN value,
Context context) throws IOException, InterruptedException {
context.write((KEYOUT) key, (VALUEOUT) value);
}
/**
* MapTask任务结束后被调用一次
*/
protected void cleanup(Context context
) throws IOException, InterruptedException {
// NOTHING
}
/**
* Expert users can override this method for more complete control over the
* execution of the Mapper.
* @param context
* @throws IOException
*/
public void run(Context context) throws IOException, InterruptedException {
setup(context);
try {
while (context.nextKeyValue()) {
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
} finally {
cleanup(context);
}
}
}
Reduce函数
public class Reducer<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
/**
* The <code>Context</code> passed on to the {@link Reducer} implementations.
*/
public abstract class Context
implements ReduceContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
}
/**
* Called once at the start of the task.
*/
protected void setup(Context context
) throws IOException, InterruptedException {
// NOTHING
}
/**
* This method is called once for each key. Most applications will define
* their reduce class by overriding this method. The default implementation
* is an identity function.
*/
@SuppressWarnings("unchecked")
protected void reduce(KEYIN key, Iterable<VALUEIN> values, Context context
) throws IOException, InterruptedException {
for(VALUEIN value: values) {
context.write((KEYOUT) key, (VALUEOUT) value);
}
}
/**
* Called once at the end of the task.
*/
protected void cleanup(Context context
) throws IOException, InterruptedException {
// NOTHING
}
/**
* Advanced application writers can use the
* {@link #run(org.apache.hadoop.mapreduce.Reducer.Context)} method to
* control how the reduce task works.
*/
public void run(Context context) throws IOException, InterruptedException {
setup(context);
try {
while (context.nextKey()) {
reduce(context.getCurrentKey(), context.getValues(), context);
// If a back up store is used, reset it
Iterator<VALUEIN> iter = context.getValues().iterator();
if(iter instanceof ReduceContext.ValueIterator) {
((ReduceContext.ValueIterator<VALUEIN>)iter).resetBackupStore();
}
}
} finally {
cleanup(context);
}
}
}
MapReduce类型配置
重点说明几个选项:
l setPartitionerClass :在map阶段定义分区,默认HashPartitioner,主要可以让多个reduce同时执行
l setCombinerClass:在分区后的数据,通过Combiner函数,对相同key进行合并,减少网络传输
l setSortComparatorClass: Mapreduce默认是按照key排序,不对value排序,若涉及两个指标的排序,可以设置二次排序来完成
l setGroupingComparatorClass: 由于二次排序,map的输出key是组合键,但有时需要按照原来的key传递到对应的reduce上,需要重写分组,可以减少reduce的调用次数