如何应用分治法求解棋盘覆盖问题呢?分治的技巧在于如何划分棋盘,使划分后的子棋盘的大小相同,并且每个子棋盘均包含一个特殊方格,从而将原问题分解为规模较小的棋盘覆盖问题。k>0时,可将2k×2k的棋盘划分为4个2(k-1)×2(k-1)的子棋盘,如图4.11(a)所示。这样划分后,由于原棋盘只有一个特殊方格,所以,这4个子棋盘中只有一个子棋盘包含该特殊方格,其余3个子棋盘中没有特殊方格。为了将这3个没有特殊方格的子棋盘转化为特殊棋盘,以便采用递归方法求解,可以用一个L型骨牌覆盖这3个较小棋盘的会合处,如图4.11(b)所示,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种划分策略,直至将棋盘分割为1×1的子棋盘。


算法实现:

(1)棋盘:可以用一个二维数组board[size][size]表示一个棋盘,其中,size=2^k。为了在递归处理的过程中使用同一个棋盘,将数组board设为全局变量;

(2)子棋盘:整个棋盘用二维数组board[size][size]表示,其中的子棋盘由棋盘左上角的下标tr、tc和棋盘大小s表示;

(3)特殊方格:用board[dr][dc]表示特殊方格,dr和dc是该特殊方格在二维数组board中的下标;

(4) L型骨牌:一个2k×2k的棋盘中有一个特殊方格,所以,用到L型骨牌的个数为(4^k-1)/3,将所有L型骨牌从1开始连续编号,用一个全局变量t表示。

设全局变量t已初始化为0

C++实现:

#include <iostream>
using namespace std;

int tile = 1;//全局变量 骨牌编号
int Board[8][8];//棋盘
void ChessBoard(int tr,int tc,int dr,int dc,int size);

int main()
{
for(int i=0; i<8; i++)
{
for(int j=0; j<8; j++)
{
Board[i][j] = 0;
}
}

ChessBoard(0,0,2,3,8);

for(int i=0; i<8; i++)
{
for(int j=0; j<8; j++)
{
printf("%4d",Board[i][j]);
}
cout<<endl;
}
}

/**
* tr : 棋盘左上角的行号,tc棋盘左上角的列号
* dr : 特殊方格左上角的行号,dc特殊方格左上角的列号
* size :size = 2^k 棋盘规格为2^k*2^k
*/
void ChessBoard(int tr,int tc,int dr,int dc,int size)
{
if(size == 1)
{
return;
}
int t = tile++;//L型骨牌编号
int s = size/2;//分割棋盘

//覆盖左上角子棋盘
if(dr<tr+s && dc<tc+s)//特殊方格在此棋盘中
{
ChessBoard(tr,tc,dr,dc,s);
}
else//特殊方格不在此棋盘中
{
//用编号为t的骨牌覆盖右下角
Board[tr+s-1][tc+s-1] = t;
//覆盖其余方格
ChessBoard(tr,tc,tr+s-1,tc+s-1,s);
}

//覆盖右上角子棋盘
if(dr<tr+s && dc>=tc+s)//特殊方格在此棋盘中
{
ChessBoard(tr,tc+s,dr,dc,s);
}
else//特殊方格不在此棋盘中
{
//用编号为t的骨牌覆盖左下角
Board[tr+s-1][tc+s] = t;
//覆盖其余方格
ChessBoard(tr,tc+s,tr+s-1,tc+s,s);
}

//覆盖左下角子棋盘
if(dr>=tr+s && dc<tc+s)//特殊方格在此棋盘中
{
ChessBoard(tr+s,tc,dr,dc,s);
}
else//特殊方格不在此棋盘中
{
//用编号为t的骨牌覆盖右上角
Board[tr+s][tc+s-1] = t;
//覆盖其余方格
ChessBoard(tr+s,tc,tr+s,tc+s-1,s);
}

//覆盖右下角子棋盘
if(dr>=tr+s && dc>=tc+s)//特殊方格在此棋盘中
{
ChessBoard(tr+s,tc+s,dr,dc,s);
}
else//特殊方格不在此棋盘中
{
//用编号为t的骨牌覆盖左上角
Board[tr+s][tc+s] = t;
//覆盖其余方格
ChessBoard(tr+s,tc+s,tr+s,tc+s,s);
}

}

结果:

算法:棋盘覆盖问题_全局变量