高光谱遥感能够实现冠层生化特性的大规模绘图。本研究探讨了从印度尼西亚Berau三角洲的红树林中回收氮,磷,钾,钙,镁和钠浓度的可能性。

该研究的目的是(1)评估叶面化学检索的准确性,(2)比较基于支持向量回归(SVR)的模型的性能,即ε-SVR,ν-SVR和最小二乘SVR(LS) -SVR),基于偏最小二乘回归(PLSR)的模型,以及(3)研究哪种光谱变换最适合。

 

 简介

红树林生长在热带和亚热带的潮间带沿海栖息地。它们是地球上受威胁最严重的脆弱生态系统之一,并受到人类活动的持续压力 。 

 

 材料和方法

研究区位于印度尼西亚东加里曼丹省的Berau三角洲 。 

研究区域的位置(数据来源:Bakosurtanal,印度尼西亚,2000年)。

拓端数据tecdat|matlab代写利用PLSR和支持向量回归分析红树林叶面化学的高光谱分析_偏最小二乘

拓端数据tecdat|matlab代写利用PLSR和支持向量回归分析红树林叶面化学的高光谱分析_偏最小二乘_02

 

 叶子样品的集合

 样本沿垂直于海岸线的横断面收集。目的是捕捉研究区红树林类型和生长条件的变化,反映叶片生化指标的变化。距海岸线最大长度400米被认为足以捕获叶面生化变异。总共有77个叶样品沿着横断面收集,距离大约为50米的分离点 。 

研究区域中的样本位置。

拓端数据tecdat|matlab代写利用PLSR和支持向量回归分析红树林叶面化学的高光谱分析_偏最小二乘_03

拓端数据tecdat|matlab代写利用PLSR和支持向量回归分析红树林叶面化学的高光谱分析_偏最小二乘_04

 

在每个样本点,选择主导属的代表树,并且其位置用GPS登记。从树冠上部切下一对树枝,从这些树枝上收集10片成熟的未受损叶子并储存在信封中。红树叶的生化成分随叶龄而变化,特别是在衰老过程中。

 

光谱变换

众所周知的是适当的光谱转化技术可以去除噪声和提高生物化学吸收特征,从而提高了回归模型的精确度 。除了使用未转换的反射率之外,还应用了四种光谱转换方法并在分析中进行了比较。

拓端数据tecdat|matlab代写利用PLSR和支持向量回归分析红树林叶面化学的高光谱分析_数据_05

拓端数据tecdat|matlab代写利用PLSR和支持向量回归分析红树林叶面化学的高光谱分析_偏最小二乘_06

 

偏最小二乘回归

PLSR使用分量投影将整个频谱减少到包含最有用信息的较少数量的非相关分量(也称为潜在变量)。在很大程度上,在凝聚的组分中消除了原始光谱中的噪声和共线性。MATLAB v.R2010a(MathWorks)中的PLSREGRESS工具用于回归建模,并通过五重交叉验证优化组件数量。

 

[XL,yl,XS,YS,beta,PCTVAR] = plsregress(X,y,10); plot(1:10,cumsum(100*PCTVAR(2,:)),'-bo');xlabel('Number of PLS components');
ylabel('Percent Variance Explained in y');

yfit = [ones(size(X,1),1) X]*beta;
residuals = y - yfit;
stem(residuals)
xlabel('Observation');
ylabel('Residual');

 

光谱波长的相对重要性

基于CRDR(最高性能的光谱变换技术)的模型用于分析光谱带的相对重要性。 LS-SVR和PLSR系数显示相似的模式,表明SVR p-矢量包含类似于PLSR系数的信息,并且可以以相同的方式解释。 

使用CRDR转换反射率估算N的光谱带的相对重要性。系数通过除以它们各自的标准偏差归一化。

拓端数据tecdat|matlab代写利用PLSR和支持向量回归分析红树林叶面化学的高光谱分析_高光谱_07

拓端数据tecdat|matlab代写利用PLSR和支持向量回归分析红树林叶面化学的高光谱分析_偏最小二乘_08

使用LS-SVR和CRDR进行氮预测。

拓端数据tecdat|matlab代写利用PLSR和支持向量回归分析红树林叶面化学的高光谱分析_偏最小二乘_09

拓端数据tecdat|matlab代写利用PLSR和支持向量回归分析红树林叶面化学的高光谱分析_数据_10

 

使用所有CRDR条带从PLSR得到的氮浓度图

拓端数据tecdat|matlab代写利用PLSR和支持向量回归分析红树林叶面化学的高光谱分析_偏最小二乘_11

拓端数据tecdat|matlab代写利用PLSR和支持向量回归分析红树林叶面化学的高光谱分析_数据_12

 

叶面积的变化可能影响预测的N浓度。然而,尽管树木密度较低,沿着海岸线的阿维森尼亚林分仍显示出始终如一的高水平。具有高度泥浆或根(即低LAI)的像素被分类为非红树林(地图上的浅灰色),因此减少了稀疏冠层覆盖的负面影响。

 

 

结论

基于该研究,得出以下结论。

1。

评估了四种不同回归技术ε-SVR,ν-SVR,LS-SVR和PLSR的性能。 PLSR是使用所有波段时具有最高精度的方法,并且在抑制氮气图中的噪声方面更有效。

2。

基于SVM的方法易受自变量中的冗余和共线性的影响,并且必须减少频带的数量以获得最佳性能。在这里,通过分析生成的PLSR和SVR模型的结构来识别最具信息性的条带。

3。

比较了不同的光谱变换方法对预测模型性能的影响。CRDR被证明是增强与氮有关的吸收特征的最有效的转化方法。

总体而言,该研究已经证明了使用空气传播的高光谱数据和经验模型预测红树林中氮的可能性。用于预测磷,钾,钙,镁和钠的模型显示出不太令人鼓舞的结果。生成了研究区域的叶片氮变异图,并且出现的模式可用于分析生态系统过程,例如与红树林中的洪水进行养分交换。分析这些大规模的叶面氮空间模式对于红树林养分动态研究人员和森林管理的角度来说都是非常有益的。



 拓端数据tecdat|matlab代写利用PLSR和支持向量回归分析红树林叶面化学的高光谱分析_高光谱_13


 

如果您有任何疑问,请在下面发表评论。