R语言对巨灾风险下的再保险合同定价研究案例:广义线性模型和帕累托分布Pareto distributions分析
本文为非人寿保险课程的一部分,该示例对1900 -2005年间的“ 美国标准化飓风损失 ”数据集进行研究(2008),我们使用了广义线性模型和帕累托分布Pareto distributions分析。该数据集以xls格式提供,首先我们来导入它,
数据导入和清理
excel电子表格的问题在于某些列可能具有预先指定的格式(例如,损失为000,000,000格式)
要获取我们可以使用的格式的数据,考虑以下函数,
然后将这些值转换为数字,
从现在开始,这是我们将使用的数据集,
数据探索
我们可以直观地看到1900年至2005年的207次飓风的成本(这里的x轴不是时间,它只是损失的指数)
通常,计算保险合同的纯保费时有两个部分。索赔数量(或此处的飓风)以及每项索赔的个人损失。我们已经看到了个人损失,现在让我们集中讨论年度频率。
平均而言,我们每年大约遭受2次(主要)飓风,
广义线性模型预测
在预测模型中(此处,我们希望为2014年的再保险合同定价),我们可能需要考虑飓风发生频率的某些可能趋势。我们可以考虑用glm预测线性趋势或指数趋势
我们可以绘制这三个预测,并预测2014年(主要)飓风的数量,
观察到改变模型将改变纯粹的溢价:如果预测不变,我们预计飓风将少于2(主要),但是随着指数趋势的发展,我们预计将超过4。
这是预期的频率。现在,我们应该找到一个合适的模型来计算再保险条约的纯保费,并具有(高)免赔额和有限(但大)赔付额。合适的模型是一个帕累托分布(见Hagstrœm(1925年)。
估计帕累托分布尾部指数
显然,主要飓风造成的损失惨重。
现在,考虑一家拥有5%市场份额的保险公司。我们将考虑\ tilde Y_i = Y_i / 20。损失如下。考虑一个再保险条约,其免赔额为2(十亿),有限承保范围为4(十亿),
对于我们的帕累托模型,仅考虑5亿美元以上的损失,
八分之一的飓风达到了该水平
计算再保险合同的预期价值
鉴于损失超过5亿,我们现在可以计算再保险合同的预期价值,
现在,我们预计每年的飓风会少于2(主要)
每个飓风给我们的保险公司带来超过5亿的损失的机率是12.5%,
并假设飓风造成的损失超过5亿美元,那么再保险公司的预期还款额(百万)
所以再保险合同的纯保费就是
覆盖40亿,超过2个。