金融市场上最重要的任务之一就是分析各种投资的历史收益。要执行此分析,我们需要资产的历史数据。数据提供者很多,有些是免费的,大多数是付费的。在本文中,我们将使用Yahoo金融网站上的数据。

在这篇文章中,我们将:

  1. 下载收盘价
  2. 计算收益率
  3. 计算收益的均值和标准差

让我们先加载库。

  1.  library(tidyquant)
  2.  library(timetk)

我们将获得Netflix价格的收盘价。

  1.  netflix <- tq_get("NFLX",
  2.  from = '2009-01-01',
  3.  to = "2018-03-01",
  4.  get = "stock.prices")

接下来,我们将绘制Netflix的调整后收盘价。

  1.  netflix %>%
  2.  ggplot(aes(x = date, y = adjusted)) +
  3.  geom_line() +
  4.  ggtitle("Netflix since 2009") +
  5.  labs(x = "Date", "Price") +
  6.  scale_x_date(date_breaks = "years", date_labels = "%Y") +
  7.  labs(x = "Date", y = "Adjusted Price") +
  8.  theme_bw()

拓端tecdat|基于R语言股票市场收益的统计可视化分析_R语言

 

计算单个股票的每日和每月收益率

一旦我们从Yahoo Finance下载了收盘价,下一步便是计算收益。我们将再次使用tidyquant包进行计算。我们已经在上面下载了Netflix的价格数据,如果您还没有下载,请参见上面的部分。

  1.  # 计算每日收益
  2.   
  3.  netflix_daily_returns <- netflix %>%
  4.  tq_transmute(select = adjusted, 这指定要选择的列
  5.  mutate_fun = periodReturn, # 这指定如何处理该列
  6.  period = "daily", # 此参数计算每日收益
  7.  col_rename = "nflx_returns") # 重命名列
  8.   
  9.  #计算每月收益
  10.  netflix_monthly_returns <- netflix %>%
  11.  tq_transmute(select = adjusted,
  12.  mutate_fun = periodReturn,
  13.  period = "monthly", # 此参数计算每月收益
  14.  col_rename = "nflx_returns")

绘制Netflix的每日和每月收益图表

  1.  # 我们将使用折线图获取每日收益
  2.   
  3.   
  4.  ggplot(aes(x = date, y = nflx_returns)) +
  5.  geom_line() +
  6.  theme_classic() +

拓端tecdat|基于R语言股票市场收益的统计可视化分析_空间可视化_02

查看Netflix的每日收益图表后,我们可以得出结论,收益波动很大,并且股票在任何一天都可以波动+/- 5%。为了了解收益率的分布,我们可以绘制直方图。

  1.  netflix_daily_returns %>%
  2.  ggplot(aes(x = nflx_returns)) +
  3.  geom_histogram(binwidth = 0.015) +
  4.  theme_classic() +

拓端tecdat|基于R语言股票市场收益的统计可视化分析_空间可视化_03

接下来,我们可以绘制自2009年以来Netflix的月度收益率。我们使用条形图来绘制数据。

  1.  # 绘制Netflix的月度收益图表。 使用条形图
  2.   
  3.   
  4.  ggplot(aes(x = date, y = nflx_returns)) +
  5.  geom_bar(stat = "identity") +
  6.  theme_classic() +

拓端tecdat|基于R语言股票市场收益的统计可视化分析_数据_04

 

计算Netflix股票的累计收益

绘制每日和每月收益对了解投资的每日和每月波动很有用。要计算投资的增长,换句话说,计算投资的总收益,我们需要计算该投资的累积收益。要计算累积收益,我们将使用  cumprod()  函数。

  1.   
  2.  mutate(cr = cumprod(1 + nflx_returns)) %>% # 使用cumprod函数
  3.   
  4.  ggplot(aes(x = date, y = cumulative_returns)) +
  5.  geom_line() +
  6.  theme_classic() +

拓端tecdat|基于R语言股票市场收益的统计可视化分析_数据_05

该图表显示了自2009年以来Netflix的累计收益。有了事后分析的力量, 自2009年以来,可以用1美元的投资赚取85美元。但据我们所知,说起来容易做起来难。在10年左右的时间里,在​​Qwickster惨败​​期间投资损失了其价值的50%。在这段时期内,很少有投资者能够坚持投资。

  1.  ggplot(aes(x = date, y = cumulative_returns)) +
  2.  geom_line() +
  3.  theme_classic() +

拓端tecdat|基于R语言股票市场收益的统计可视化分析_数据_06

我们可以直观地看到,月收益表比日图表要平滑得多。

多只股票

下载多只股票的股票市场数据。

  1.  #将我们的股票代码设置为变量
  2.   
  3.  tickers <- c("FB", "AMZN", "AAPL", "NFLX", "GOOG")
  4.   
  5.  # 下载股价数据
  6.   
  7.  multpl_stocks <- tq_get(tickers,

绘制多只股票的股价图

接下来,我们将绘制多只股票的价格图表

  1.  multpl_stocks %>%
  2.  ggplot(aes(x = date, y = adjusted,

拓端tecdat|基于R语言股票市场收益的统计可视化分析_空间可视化_07

 

这不是我们预期的结果。由于这些股票具有巨大的价格差异(FB低于165,AMZN高于1950),因此它们的规模不同。我们可以通过按各自的y比例绘制股票来克服此问题。

  1.   
  2.  facet_wrap(~symbol, scales = "free_y") + # facet_wrap用于制作不同的页面
  3.  theme_classic() +

拓端tecdat|基于R语言股票市场收益的统计可视化分析_空间可视化_08

计算多只股票的收益

计算多只股票的收益与单只股票一样容易。这里只需要传递一个附加的参数。我们需要使用参数  group_by(symbol)  来计算单个股票的收益。

  1.  #计算多只股票的每日收益
  2.   
  3.  tq_transmute(select = adjusted,
  4.  mutate_fun = periodReturn,
  5.  period = 'daily',
  6.  col_rename = 'returns')
  7.   
  8.  #计算多只股票的月收益
  9.   
  10.   
  11.  tq_transmute(select = adjusted,
  12.  mutate_fun = periodReturn,
  13.  period = 'monthly',
  14.  col_rename = 'returns')

绘制多只股票的收益图表

一旦有了收益计算,就可以在图表上绘制收益。

  1.  multpl_stock_daily_returns %>%
  2.  ggplot(aes(x = date, y = returns)) +
  3.  geom_line() +
  4.  geom_hline(yintercept = 0) +

拓端tecdat|基于R语言股票市场收益的统计可视化分析_R语言_09

 

  1.  multpl_stock_monthly_returns %>%
  2.  ggplot(aes(x = date, y = return
  3.  scale_fill_brewer(palette = "Set1", # 我们会给他们不同的颜色,而不是黑色

拓端tecdat|基于R语言股票市场收益的统计可视化分析_R语言_10

在FAANG股票中,苹果的波动最小,而Facebook和Netflix的波动最大。对于他们从事的业务而言,这是显而易见的。Apple是一家稳定的公司,拥有稳定的现金流量。它的产品受到数百万人的喜爱和使用,他们对Apple拥有极大的忠诚度。Netflix和Facebook也是令人难以置信的业务,但它们处于高增长阶段,任何问题(收益或用户增长下降)都可能对股票产生重大影响。

计算多只股票的累计收益

通常,我们希望看到过去哪种投资产生了最佳效果。为此,我们可以计算累积结果。下面我们比较自2013年以来所有FAANG股票的投资结果。哪项是自2013年以来最好的投资?

  1.  multpl_stock_monthly_returns %>%
  2.  mutate(returns e_returns = cr - 1) %>%
  3.  ggplot(aes(x = date, y = cumulative_returns, color = symbol)) +
  4.  geom_line() +
  5.  labs(x = "Date"

拓端tecdat|基于R语言股票市场收益的统计可视化分析_R语言_11

 

毫不奇怪,Netflix自2013年以来获得了最高的收益。亚马逊和Facebook位居第二和第三。

统计数据

计算单个股票的均值,标准差

我们已经有了Netflix的每日和每月收益数据。现在我们将计算收益的每日和每月平均数和标准差。 为此,我们将使用  mean()  和  sd()函数。

  1.  # 计算平均值
  2.   
  3.  .[[1]] %>%
  4.  mean(na.rm = TRUE)
  5.   
  6.  nflx_monthly_mean_ret <- netfl turns) %>%
  7.  .[[1]] %>%
  8.  mean(na.rm = TRUE)
  9.   
  10.  # 计算标准差
  11.   
  12.  nflx_daily_sd_ret <- netflirns) %>%
  13.  .[[1]] %>%
  14.  sd()
  15.   
  16.  nflx_monthly_sd_ret <- netflix_rns) %>%
  17.  .[[1]] %>%
  18.  sd()
  19.  nflx_stat
  20.  ## # A tibble: 2 x 3
  21.  ## period mean sd
  22.  ## <chr> <dbl> <dbl>
  23.  ## 1 Daily 0.00240 0.0337
  24.  ## 2 Monthly 0.0535 0.176

我们可以看到Netflix的平均每日收益为0.2%,标准差为3.3%。它的月平均回报率是5.2%和17%标准差。该数据是自2009年以来的整个时期。如果我们要计算每年的均值和标准差,该怎么办。我们可以通过按年份对Netflix收益数据进行分组并执行计算来进行计算。

  1.  netflix %>%
  2.  summarise(Monthly_Mean_Returns = mean(nflx_returns),
  3.  MOnthly_Standard_Deviation = sd(nflx_returns)
  4.  ## # A tibble: 10 x 3
  5.  ## year Monthly_Mean_Returns MOnthly_Standard_Deviation
  6.  ## <dbl> <dbl> <dbl>
  7.  ## 1 2009 0.0566 0.0987
  8.  ## 2 2010 0.110 0.142
  9.  ## 3 2011 -0.0492 0.209
  10.  ## 4 2012 0.0562 0.289
  11.  ## 5 2013 0.137 0.216
  12.  ## 6 2014 0.00248 0.140
  13.  ## 7 2015 0.0827 0.148
  14.  ## 8 2016 0.0138 0.126
  15.  ## 9 2017 0.0401 0.0815
  16.  ## 10 2018 0.243 0.233

我们还可以绘制结果更好地理解。

  1.  netflix_monthly_returns %>%
  2.  mutate(year = rns, Standard_Deviation, keyistic)) +
  3.  geom_bar(stat = "identity", position = "dodge") +
  4.  scale_y_continuous(b ) +
  5.  theme_bw() +

拓端tecdat|基于R语言股票市场收益的统计可视化分析_空间可视化_12

 

我们可以看到,自2009年以来,每月收益和标准差波动很大。2011年,平均每月收益为-5%。

计算多只股票的均值,标准差

接下来,我们可以计算多只股票的均值和标准差。

  1.   
  2.  group_by(symbol) %>%
  3.  summarise(mean = mean(returns),
  4.  sd = sd(returns))
  5.  ## # A tibble: 5 x 3
  6.  ## symbol mean sd
  7.  ## <chr> <dbl> <dbl>
  8.  ## 1 AAPL 0.00100 0.0153
  9.  ## 2 AMZN 0.00153 0.0183
  10.  ## 3 FB 0.00162 0.0202
  11.  ## 4 GOOG 0.000962 0.0141
  12.  ## 5 NFLX 0.00282 0.0300
  13.  group_by(symbol) %>%
  14.  summarise(mean = mean(returns),
  15.  sd = sd(returns))
  16.  ## # A tibble: 5 x 3
  17.  ## symbol mean sd
  18.  ## <chr> <dbl> <dbl>
  19.  ## 1 AAPL 0.0213 0.0725
  20.  ## 2 AMZN 0.0320 0.0800
  21.  ## 3 FB 0.0339 0.0900
  22.  ## 4 GOOG 0.0198 0.0568
  23.  ## 5 NFLX 0.0614 0.157

计算收益的年均值和标准差。

  1.  %>%
  2.  group_by(symbol, year) %>%
  3.  summarise(mean = mean(returns),
  4.  sd = sd(returns))
  5.  ## # A tibble: 30 x 4
  6.  ## # Groups: symbol [?]
  7.  ## symbol year mean sd
  8.  ## <chr> <dbl> <dbl> <dbl>
  9.  ## 1 AAPL 2013 0.0210 0.0954
  10.  ## 2 AAPL 2014 0.0373 0.0723
  11.  ## 3 AAPL 2015 -0.000736 0.0629
  12.  ## 4 AAPL 2016 0.0125 0.0752
  13.  ## 5 AAPL 2017 0.0352 0.0616
  14.  ## 6 AAPL 2018 0.0288 0.0557
  15.  ## 7 AMZN 2013 0.0391 0.0660
  16.  ## 8 AMZN 2014 -0.0184 0.0706
  17.  ## 9 AMZN 2015 0.0706 0.0931
  18.  ## 10 AMZN 2016 0.0114 0.0761
  19.  ## # ... with 20 more rows

我们还可以绘制此统计数据。

  1.  multpl_stock_monthly_returns %>%
  2.  mutate(year = year(date)) %>%
  3.  group_by(symbol, yea s = seq(-0.1,0.4,0.02),
  4.  labels = scales::percent) +
  5.  scale_x_continuous(breaks = seq(2009,2018,1)) +
  6.  labs(x = "Year", y = Stocks") +
  7.  ggtitle

拓端tecdat|基于R语言股票市场收益的统计可视化分析_空间可视化_13

 

  1.  multpl_stock_monthly_returns %>%
  2.  mutate(year = year(date)) %>%
  3.  ggplot(aes(x = year, y = sd, fill = symbol)) +
  4.  geom_bar(stat = "identity", position = "dodge", width = 0.7) +
  5.  scale_y_continuous(breaks = seq(-0.1,0.4,0.02),
  6.  labels = scales::p
  7.  scale_fill_brewer(palette = "Set1",

拓端tecdat|基于R语言股票市场收益的统计可视化分析_数据_14

 

计算多只股票的协方差和相关性

另一个重要的统计计算是股票的相关性和协方差。为了计算这些统计数据,我们需要修改数据。我们将其转换为xts对象。

协方差表

  1.  #计算协方差
  2.   
  3.  tk_xts(silent = TRUE) %>%
  4.  cov()
  5.  ## AAPL AMZN FB GOOG NFLX
  6.  ## AAPL 5.254736e-03 0.001488462 0.000699818 0.0007420307 -1.528193e-05
  7.  ## AMZN 1.488462e-03 0.006399439 0.001418561 0.0028531565 4.754894e-03
  8.  ## FB 6.998180e-04 0.001418561 0.008091594 0.0013566480 3.458228e-03
  9.  ## GOOG 7.420307e-04 0.002853157 0.001356648 0.0032287790 3.529245e-03
  10.  ## NFLX -1.528193e-05 0.004754894 0.003458228 0.0035292451 2.464202e-02

相关表

  1.  # 计算相关系数
  2.   
  3.  %>%
  4.  tk_xts(silent = TRUE) %>%
  5.  cor()
  6.  ## AAPL AMZN FB GOOG NFLX
  7.  ## AAPL 1.000000000 0.2566795 0.1073230 0.1801471 -0.001342964
  8.  ## AMZN 0.256679539 1.0000000 0.1971334 0.6276759 0.378644485
  9.  ## FB 0.107322952 0.1971334 1.0000000 0.2654184 0.244905437
  10.  ## GOOG 0.180147089 0.6276759 0.2654184 1.0000000 0.395662114
  11.  ## NFLX -0.001342964 0.3786445 0.2449054 0.3956621 1.000000000

 

我们可以使用​​corrplot()​​ 包来绘制相关矩阵图。

## corrplot 0.84 loaded
  1.   
  2.  cor() %>%
  3.  corrplot()

拓端tecdat|基于R语言股票市场收益的统计可视化分析_空间可视化_15


拓端tecdat|基于R语言股票市场收益的统计可视化分析_空间可视化_16