Java集合是我认为在Java基础中最最重要的知识点了,Java集合是必须掌握的。我在实习/秋招面试的时候,只要是面到Java,那一定是少不了Java集合。
作为一个新人,最关心的其实有一点:这个技术在工作中是怎么用的。换个说法:“工作中常用到的Java集合有哪些,应用场景是什么”
List集合
List集合下最常见的集合类有两个:ArrayList和LinkedList
在工作中,我都是无脑用ArrayList。我问了两个同事:“你们在项目中用过LinkedList吗?”他们都表示没有。
众所周知,ArrayList底层是数组,LinkedList底层是链表。数组遍历速度快,LinkedList增删元素快。
为什么在工作中一般就用ArrayList,而不用LinkedList呢?原因也很简单:在工作中,遍历的需求比增删多,即便是增加元素往往也只是从尾部插入元素,而ArrayList在尾部插入元素也是O(1)
ArrayList增删没有想象中慢,ArrayList的增删底层调用的copyOf()被优化过,加上现代CPU对内存可以块操作,普通大小的ArrayList增删比LinkedList更快。
所以,在开发中,想到要用集合来装载元素,第一个想到的就是ArrayList。
那么来了,LinkedList用在什么地方呢?我们一般用在刷算法题上。把LinkedList当做一个先进先出的队列,LinkedList本身就实现了Queue接口。
如果考虑线程安全的问题,可以看看CopyWriteOnArrayList,实际开发用得不多,但我觉得可以了解一下它的思想(CopyWriteOn),这个思想在Linux/文件系统都有用到。
Set集合
Set集合下最常见的集合类有三个:HashSet、TreeSet、LinkedHashSet。
List和Set都是集合,一般来说:如果我们需要保证集合的元素是唯一的,就应该想到用Set集合。
比如说:现在要发送一批消息给用户,我们为了减少「一次发送重复的内容给用户」这样的错误,我们就用Set集合来保存用户的userId/phone。
自然地,首先要保证最上游的那批用户的userId/phone是没有重复的,而我们用Set集合只是为了做一个兜底来尽可能避免重复发送的问题。
一般我们在开发中最多用到的也就是HashSet。TreeSet是可以排序的Set,一般我们需要有序,从数据库拉出来的数据就是有序的,可能往往写order by id desc比较多。而在开发中也很少管元素插入有序的问题,所以LinkedHashSet一般也用不上。
如果考虑线程安全的问题,可以考虑CopyOnWriteArraySet,用得就更少了(这是一个线程安全的Set,底层实际上就是CopyWriteOnArrayList)
reeSet和LinkedHashSet更多的可能用在刷算法的时候。
Map集合
Map集合最常见的子类也有三个:HashMap、LinkedHashMap、TreeMap
如果考虑线程安全问题,应该想到的是ConcurrentHashMap,当然了Hashtable也要有一定的了解,因为面试实在是问得太多太多了。
HashMap在实际开发中用得也非常多,只要是key-value结构的,一般我们就用HashMap。LinkedHashMap和TreeMap用的不多,原因跟HashSet和TreeSet一样。
ConcurrentHashMap在实际开发中也用得挺多,我们很多时候把ConcurrentHashMap用于本地缓存,不想每次都网络请求数据,在本地做本地缓存。监听数据的变化,如果数据有变动了,就把ConcurrentHashMap对应的值给更新了。
Queue队列
不知道大家有没有学过生产者和消费者模式,秋招面试的时候可能会让你手写一段这样的代码。最简单的方式就是用阻塞队列去写。类似下面:
生产者:
import java.util.Random;
import java.util.Vector;
import java.util.concurrent.atomic.AtomicInteger;
public class Producer implements Runnable {
// true--->生产者一直执行,false--->停掉生产者 private volatile boolean isRunning = true;
// 公共资源 private final Vector sharedQueue;
// 公共资源的最大数量 private final int SIZE;
// 生产数据 private static AtomicInteger count = new AtomicInteger();
public Producer(Vector sharedQueue, int SIZE) {
this.sharedQueue = sharedQueue;
this.SIZE = SIZE;
}
@Override
public void run() {
int data;
Random r = new Random();
System.out.println("start producer id = " + Thread.currentThread().getId());
try {
while (isRunning) {
// 模拟延迟 Thread.sleep(r.nextInt(1000));
// 当队列满时阻塞等待 while (sharedQueue.size() == SIZE) {
synchronized (sharedQueue) {
System.out.println("Queue is full, producer " + Thread.currentThread().getId()
+ " is waiting, size:" + sharedQueue.size());
sharedQueue.wait();
}
}
// 队列不满时持续创造新元素 synchronized (sharedQueue) {
// 生产数据 data = count.incrementAndGet();
sharedQueue.add(data);
System.out.println("producer create data:" + data + ", size:" + sharedQueue.size());
sharedQueue.notifyAll();
}
}
} catch (InterruptedException e) {
e.printStackTrace();
Thread.currentThread().interrupted();
}
}
public void stop() {
isRunning = false;
}
}
消费者:
import java.util.Random;
import java.util.Vector;
public class Consumer implements Runnable {
// 公共资源 private final Vector sharedQueue;
public Consumer(Vector sharedQueue) {
this.sharedQueue = sharedQueue;
}
@Override
public void run() {
Random r = new Random();
System.out.println("start consumer id = " + Thread.currentThread().getId());
try {
while (true) {
// 模拟延迟 Thread.sleep(r.nextInt(1000));
// 当队列空时阻塞等待 while (sharedQueue.isEmpty()) {
synchronized (sharedQueue) {
System.out.println("Queue is empty, consumer " + Thread.currentThread().getId()
+ " is waiting, size:" + sharedQueue.size());
sharedQueue.wait();
}
}
// 队列不空时持续消费元素 synchronized (sharedQueue) {
System.out.println("consumer consume data:" + sharedQueue.remove(0) + ", size:" + sharedQueue.size());
sharedQueue.notifyAll();
}
}
} catch (InterruptedException e) {
e.printStackTrace();
Thread.currentThread().interrupt();
}
}
}
Main方法测试:
import java.util.Vector;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class Test2 {
public static void main(String[] args) throws InterruptedException {
// 1.构建内存缓冲区 Vector sharedQueue = new Vector();
int size = 4;
// 2.建立线程池和线程 ExecutorService service = Executors.newCachedThreadPool();
Producer prodThread1 = new Producer(sharedQueue, size);
Producer prodThread2 = new Producer(sharedQueue, size);
Producer prodThread3 = new Producer(sharedQueue, size);
Consumer consThread1 = new Consumer(sharedQueue);
Consumer consThread2 = new Consumer(sharedQueue);
Consumer consThread3 = new Consumer(sharedQueue);
service.execute(prodThread1);
service.execute(prodThread2);
service.execute(prodThread3);
service.execute(consThread1);
service.execute(consThread2);
service.execute(consThread3);
// 3.睡一会儿然后尝试停止生产者(结束循环) Thread.sleep(10 * 1000);
prodThread1.stop();
prodThread2.stop();
prodThread3.stop();
// 4.再睡一会儿关闭线程池 Thread.sleep(3000);
// 5.shutdown()等待任务执行完才中断线程(因为消费者一直在运行的,所以会发现程序无法结束) service.shutdown();
}
}
我的项目用阻塞队列也挺多的(我觉得跟个人编写的代码风格习惯有关),类似实现了上面的生产者和消费者模式。
真实场景例子:运营要发一条推送消息,首先需要去用户画像系统圈选一个人群,填写对应的人群ID和发送时间。
我通过时间调度,通过RPC拿到人群的信息。遍历HDFS得到这个人群的每个userId
将遍历的userId放到一个阻塞队列里边去,用多个线程while(true)取阻塞队列的数据
好处是什么?我在取userId的时候,会有个限制:要么超出了指定的时间,要么达到BatchSize的值。这样我就可以将相同内容的不同userId组成一个Task。
本来100个userId是100个Task,现在我将100个userId放在一个Task里边(因为发送的内容是相同的,所以我可以这么干)。这样再往下游传的时候,并发量就降低了很多。
什么时候考虑线程安全
什么时候考虑线程安全的集合类,那当然是线程不安全的时候咯。那什么时候线程不安全?最常见的是:操作的对象是有状态的
虽然说,我们经常会听到线程不安全,但在业务开发中要我们程序员处理线程不安全的地方少之又少。比如说:你在写Servlet的时候,加过syn/lock锁吗?应该没有吧?
因为我们的操作的对象往往是无状态的。没有共享变量被多个线程访问,自然就没有线程安全问题了。
SpringMVC是单例的,但SpringMVC都是在方法内操作数据的,每个线程进入方法都会生成栈帧,每个栈帧的数据都是线程独有的,如果不设定共享变量,不会有线程安全问题。
面只是简单举了SpringMVC的例子(只是为了更好的理解);
一句话总结:只要涉及到多个线程操作一个共享变量的时候,就要考虑是不是要用线程安全的集合类。更多的细节,等我写Java多线程总结的时候再说了