FreeWheel,一家专注于高端视频广告投放、监测、预测、增值等关键解决方案的企业,由于一些复杂的业务需求,引入了数据仓库以便实现更多功能。
Istio 1.0 在 FreeWheel 微服务化中的应用经验
FreeWheel是一家跨全球有六大数据中心的高端视频广告管理技术和服务提供商,这样一家面对跨区域、高可用、高容灾业务场景的企业,其大数据架构选型的前、中、后期是如何进行的呢?
FreeWheel 结合自身的痛点对团队、工具和流程进行持续改进,其转向 AIOps 的例子十分典型,他们踩过的一些坑对想要采用 AIOps 的企业和团队也很有借鉴意义。
随着业务的迅猛扩增,机器学习技术也成了 FreeWheel 技术团队的选择。尤其在预测网站视频的流量上,机器学习可以大幅提升预测的精准度。
全球 6 个数据中心,日均产生近 10 亿广告投放展示日志的场景下,做好跨区域高可用的实践之道。
2016 年下半年开始,FreeWheel 开始将其业务系统从 Rails 单体应用逐步迁移到微服务,同时技术栈从 Rails 改为 Golang,两年之后,整个迁移接近尾声,FreeWheel 业务系统技术团队对外分享了它们在微服务化过程中的经验。
Copyright © 2005-2024 51CTO.COM 版权所有 京ICP证060544号