接着第一部分,这里写如何使用自定义数据集,调用transformers库去训练模型,其实感觉本质就是如何把数据集合理读取进来。
文本分类
使用aclImdb数据集,我比较倾向于直接用list把文本给读取进来
(一)数据准备
#数据读取
from pathlib import Path
def read_imdb_split(split_dir):
split_dir = Path(split_dir)
texts = []
labels = []
for label_dir in ["pos", "neg"]:
for text_file in (split_dir/label_dir).iterdir():
texts.append(text_file.read_text())
labels.append(0 if label_dir is "neg" else 1)
return texts, labels
train_texts, train_labels = read_imdb_split('aclImdb/train')
test_texts, test_labels = read_imdb_split('aclImdb/test')
#数据处理
from sklearn.model_selection import train_test_split
train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=.2)
##分词
from transformers import DistilBertTokenizerFast
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
##文本向量化
train_encodings = tokenizer(train_texts, truncation=True, padding=True)
val_encodings = tokenizer(val_texts, truncation=True, padding=True)
test_encodings = tokenizer(test_texts, truncation=True, padding=True)
(二)管道搭建
1.使用pytorch的方式实现
import torch
class IMDbDataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
train_dataset = IMDbDataset(train_encodings, train_labels)
val_dataset = IMDbDataset(val_encodings, val_labels)
test_dataset = IMDbDataset(test_encodings, test_labels)
2.使用tensorflow的方式实现
import tensorflow as tf
train_dataset = tf.data.Dataset.from_tensor_slices((
dict(train_encodings),
train_labels
))
val_dataset = tf.data.Dataset.from_tensor_slices((
dict(val_encodings),
val_labels
))
test_dataset = tf.data.Dataset.from_tensor_slices((
dict(test_encodings),
test_labels
))
(三)训练模式
1.使用自带训练函数训练
(1)使用pytorch的方式实现
model_path="H:\\code\\Model\\distilbert-base-cased\\"
from transformers import DistilBertForSequenceClassification, Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir='./results', # output directory
num_train_epochs=3, # total number of training epochs
per_device_train_batch_size=16, # batch size per device during training
per_device_eval_batch_size=64, # batch size for evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=10,
)
model = DistilBertForSequenceClassification.from_pretrained(model_path)
trainer = Trainer(
model=model, # the instantiated ???? Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=val_dataset # evaluation dataset
)
trainer.train()
(2)使用tensorflow的方式实现
from transformers import TFDistilBertForSequenceClassification, TFTrainer, TFTrainingArguments
model_path="H:\\code\\Model\\distilbert-base-cased\\"
training_args = TFTrainingArguments(
output_dir='./results', # output directory
num_train_epochs=3, # total number of training epochs
per_device_train_batch_size=16, # batch size per device during training
per_device_eval_batch_size=64, # batch size for evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=10,
)
with training_args.strategy.scope():
model = TFDistilBertForSequenceClassification.from_pretrained(model_path)
trainer = TFTrainer(
model=model, # the instantiated ???? Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=val_dataset # evaluation dataset
)
trainer.train()
2.使用原生框架训练
(1)使用pytorch的方式实现
from torch.utils.data import DataLoader
from transformers import DistilBertForSequenceClassification, AdamW
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model_path="H:\\code\\Model\\distilbert-base-cased\\"
model = DistilBertForSequenceClassification.from_pretrained(model_path)
model.to(device)
model.train()
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
optim = AdamW(model.parameters(), lr=5e-5)
for epoch in range(3):
for batch in train_loader:
optim.zero_grad()
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs[0]
loss.backward()
optim.step()
model.eval()
(2)使用tensorflow的方式实现
from transformers import TFDistilBertForSequenceClassification
model_path="H:\\code\\Model\\distilbert-base-cased\\"
model = TFDistilBertForSequenceClassification.from_pretrained(model_path)
optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss) # can also use any keras loss fn
model.fit(train_dataset.shuffle(1000).batch(16), epochs=3, batch_size=16)
命名实体识别
使用wnut17数据集
(一)数据准备
#数据读取
from pathlib import Path
import re
def read_wnut(file_path):
file_path = Path(file_path)
raw_text = file_path.read_text().strip()
raw_docs = re.split(r'\n\t?\n', raw_text)
token_docs = []
tag_docs = []
for doc in raw_docs:
tokens = []
tags = []
for line in doc.split('\n'):
token, tag = line.split('\t')
tokens.append(token)
tags.append(tag)
token_docs.append(tokens)
tag_docs.append(tags)
return token_docs, tag_docs
texts, tags = read_wnut('wnut17train.conll')
#数据分割
from sklearn.model_selection import train_test_split
train_texts, val_texts, train_tags, val_tags = train_test_split(texts, tags, test_size=.2)
#数据处理
##字典和数字互相转化
unique_tags = set(tag for doc in tags for tag in doc)
tag2id = {tag: id for id, tag in enumerate(unique_tags)}
id2tag = {id: tag for tag, id in tag2id.items()}
##分词
from transformers import DistilBertTokenizerFast
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-cased')
train_encodings = tokenizer(train_texts, is_split_into_words=True, return_offsets_mapping=True, padding=True, truncation=True)
val_encodings = tokenizer(val_texts, is_split_into_words=True, return_offsets_mapping=True, padding=True, truncation=True)
##文本向量化
import numpy as np
def encode_tags(tags, encodings):
labels = [[tag2id[tag] for tag in doc] for doc in tags]
encoded_labels = []
for doc_labels, doc_offset in zip(labels, encodings.offset_mapping):
# create an empty array of -100
doc_enc_labels = np.ones(len(doc_offset),dtype=int) * -100
arr_offset = np.array(doc_offset)
# set labels whose first offset position is 0 and the second is not 0
doc_enc_labels[(arr_offset[:,0] == 0) & (arr_offset[:,1] != 0)] = doc_labels
encoded_labels.append(doc_enc_labels.tolist())
return encoded_labels
train_labels = encode_tags(train_tags, train_encodings)
val_labels = encode_tags(val_tags, val_encodings)
(二)管道搭建
1.使用pytorch的方式实现
import torch
class WNUTDataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
train_encodings.pop("offset_mapping") # we don't want to pass this to the model
val_encodings.pop("offset_mapping")
train_dataset = WNUTDataset(train_encodings, train_labels)
val_dataset = WNUTDataset(val_encodings, val_labels)
2.使用tensorflow的方式实现
import tensorflow as tf
train_encodings.pop("offset_mapping") # we don't want to pass this to the model
val_encodings.pop("offset_mapping")
train_dataset = tf.data.Dataset.from_tensor_slices((
dict(train_encodings),
train_labels
))
val_dataset = tf.data.Dataset.from_tensor_slices((
dict(val_encodings),
val_labels
))
(三)训练模式
1.使用自带训练函数训练
(1)使用pytorch的方式实现
from transformers import Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir='./results', # output directory
num_train_epochs=3, # total number of training epochs
per_device_train_batch_size=16, # batch size per device during training
per_device_eval_batch_size=64, # batch size for evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=10,
)
model_path="H:\\code\\Model\\distilbert-base-cased\\"
from transformers import DistilBertForTokenClassification
model = DistilBertForTokenClassification.from_pretrained(model_path, num_labels=len(unique_tags))
trainer = Trainer(
model=model, # the instantiated ???? Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=val_dataset # evaluation dataset
)
trainer.train()
(2)使用tensorflow的方式实现
model_path="H:\\code\\Model\\distilbert-base-cased\\"
from transformers import TFTrainer, TFTrainingArguments
from transformers import TFDistilBertForTokenClassification
training_args = TFTrainingArguments(
output_dir='./results', # output directory
num_train_epochs=3, # total number of training epochs
per_device_train_batch_size=16, # batch size per device during training
per_device_eval_batch_size=64, # batch size for evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=10,
)
with training_args.strategy.scope():
model = TFDistilBertForTokenClassification.from_pretrained(model_path, num_labels=len(unique_tags))
trainer = TFTrainer(
model=model, # the instantiated ???? Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=val_dataset # evaluation dataset
)
trainer.train()
2.使用原生框架训练
(1)使用pytorch的方式实现
from torch.utils.data import DataLoader
from transformers import AdamW
from transformers import DistilBertForTokenClassification
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model_path="H:\\code\\Model\\distilbert-base-cased\\"
model = DistilBertForTokenClassification.from_pretrained(model_path,num_labels=len(unique_tags))
model.to(device)
model.train()
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
optim = AdamW(model.parameters(), lr=5e-5)
for epoch in range(3):
for batch in train_loader:
optim.zero_grad()
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs[0]
loss.backward()
optim.step()
model.eval()
(2)使用tensorflow的方式实现
from transformers import TFDistilBertForTokenClassification
model_path="H:\\code\\Model\\distilbert-base-cased\\"
model = TFDistilBertForTokenClassification.from_pretrained(model_path, num_labels=len(unique_tags))
optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss) # can also use any keras loss fn
model.fit(train_dataset.shuffle(1000).batch(16), epochs=3, batch_size=16)
问答
(一)数据准备
使用SQuAD 2.0数据集
#数据读取
import json
from pathlib import Path
def read_squad(path):
path = Path(path)
with open(path, 'rb') as f:
squad_dict = json.load(f)
contexts = []
questions = []
answers = []
for group in squad_dict['data']:
for passage in group['paragraphs']:
context = passage['context']
for qa in passage['qas']:
question = qa['question']
for answer in qa['answers']:
contexts.append(context)
questions.append(question)
answers.append(answer)
return contexts, questions, answers
train_contexts, train_questions, train_answers = read_squad('squad/train-v2.0.json')
val_contexts, val_questions, val_answers = read_squad('squad/dev-v2.0.json')
#数据处理
def add_end_idx(answers, contexts):
for answer, context in zip(answers, contexts):
gold_text = answer['text']
start_idx = answer['answer_start']
end_idx = start_idx + len(gold_text)
# sometimes squad answers are off by a character or two – fix this
if context[start_idx:end_idx] == gold_text:
answer['answer_end'] = end_idx
elif context[start_idx-1:end_idx-1] == gold_text:
answer['answer_start'] = start_idx - 1
answer['answer_end'] = end_idx - 1 # When the gold label is off by one character
elif context[start_idx-2:end_idx-2] == gold_text:
answer['answer_start'] = start_idx - 2
answer['answer_end'] = end_idx - 2 # When the gold label is off by two characters
add_end_idx(train_answers, train_contexts)
add_end_idx(val_answers, val_contexts)
#数据管道搭建
## 文本向量化
model_path="H:\\code\\Model\\distilbert-base-cased\\"
from transformers import DistilBertTokenizerFast
tokenizer = DistilBertTokenizerFast.from_pretrained(model_path)
train_encodings = tokenizer(train_contexts, train_questions, truncation=True, padding=True)
val_encodings = tokenizer(val_contexts, val_questions, truncation=True, padding=True)
def add_token_positions(encodings, answers):
start_positions = []
end_positions = []
for i in range(len(answers)):
start_positions.append(encodings.char_to_token(i, answers[i]['answer_start']))
end_positions.append(encodings.char_to_token(i, answers[i]['answer_end']))
# if start position is None, the answer passage has been truncated
if start_positions[-1] is None:
start_positions[-1] = tokenizer.model_max_length
# if end position is None, the 'char_to_token' function points to the space before the correct token - > add + 1
if end_positions[-1] is None:
end_positions[-1] = encodings.char_to_token(i, answers[i]['answer_end'] + 1)
encodings.update({'start_positions': start_positions, 'end_positions': end_positions})
add_token_positions(train_encodings, train_answers)
add_token_positions(val_encodings, val_answers)
(二)管道搭建
1.使用pytorch的方式实现
import torch
class SquadDataset(torch.utils.data.Dataset):
def __init__(self, encodings):
self.encodings = encodings
def __getitem__(self, idx):
return {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
def __len__(self):
return len(self.encodings.input_ids)
train_dataset = SquadDataset(train_encodings)
val_dataset = SquadDataset(val_encodings)
2.使用tensorflow的方式实现
import tensorflow as tf
train_dataset = tf.data.Dataset.from_tensor_slices((
{key: train_encodings[key] for key in ['input_ids', 'attention_mask']},
{key: train_encodings[key] for key in ['start_positions', 'end_positions']}
))
val_dataset = tf.data.Dataset.from_tensor_slices((
{key: val_encodings[key] for key in ['input_ids', 'attention_mask']},
{key: val_encodings[key] for key in ['start_positions', 'end_positions']}
))
(三)训练模式
1.使用自带训练函数训练
(1)使用pytorch的方式实现
from transformers import Trainer, TrainingArguments
model_path="H:\\code\\Model\\distilbert-base-cased\\"
training_args = TrainingArguments(
output_dir='./results', # output directory
num_train_epochs=3, # total number of training epochs
per_device_train_batch_size=16, # batch size per device during training
per_device_eval_batch_size=64, # batch size for evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=10,
)
model = DistilBertForQuestionAnswering.from_pretrained(model_path)
trainer = Trainer(
model=model, # the instantiated ???? Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=val_dataset # evaluation dataset
)
trainer.train()
(2)使用tensorflow的方式实现
from transformers import TFTrainer, TFTrainingArguments
model_path="H:\\code\\Model\\distilbert-base-cased\\"
training_args = TFTrainingArguments(
output_dir='./results', # output directory
num_train_epochs=3, # total number of training epochs
per_device_train_batch_size=16, # batch size per device during training
per_device_eval_batch_size=64, # batch size for evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=10,
)
with training_args.strategy.scope():
from transformers import TFDistilBertForSequenceClassification, TFTrainer, TFTrainingArguments
training_args = TFTrainingArguments(
output_dir='./results', # output directory
num_train_epochs=3, # total number of training epochs
per_device_train_batch_size=16, # batch size per device during training
per_device_eval_batch_size=64, # batch size for evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=10,
)
with training_args.strategy.scope():
model = TFDistilBertForSequenceClassification.from_pretrained(model_path)
trainer = TFTrainer(
model=model, # the instantiated ???? Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=val_dataset # evaluation dataset
)
trainer.train()
trainer = TFTrainer(
model=model, # the instantiated ???? Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=val_dataset # evaluation dataset
)
trainer.train()
2.使用原生框架训练
(1)使用pytorch的方式实现
from transformers import DistilBertForQuestionAnswering
model_path="H:\\code\\Model\\distilbert-base-cased\\"
model = DistilBertForQuestionAnswering.from_pretrained(model_path)
from torch.utils.data import DataLoader
from transformers import AdamW
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)
model.train()
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
optim = AdamW(model.parameters(), lr=5e-5)
for epoch in range(3):
for batch in train_loader:
optim.zero_grad()
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
start_positions = batch['start_positions'].to(device)
end_positions = batch['end_positions'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, start_positions=start_positions, end_positions=end_positions)
loss = outputs[0]
loss.backward()
optim.step()
model.eval()
(2)使用tensorflow的方式实现
model_path="H:\\code\\Model\\distilbert-base-cased\\"
from transformers import TFDistilBertForQuestionAnswering
model = TFDistilBertForQuestionAnswering.from_pretrained(model_path)
# Keras will expect a tuple when dealing with labels
train_dataset = train_dataset.map(lambda x, y: (x, (y['start_positions'], y['end_positions'])))
# Keras will assign a separate loss for each output and add them together. So we'll just use the standard CE loss
# instead of using the built-in model.compute_loss, which expects a dict of outputs and averages the two terms.
# Note that this means the loss will be 2x of when using TFTrainer since we're adding instead of averaging them.
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.distilbert.return_dict = False # if using ???? Transformers >3.02, make sure outputs are tuples
optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=loss) # can also use any keras loss fn
model.fit(train_dataset.shuffle(1000).batch(16), epochs=3, batch_size=16)