读写锁简介

在并发场景中用于解决线程安全的问题,我们几乎会高频率的使用到独占式锁,通常使用java提供的关键字 synchronized或者concurrents包中实现了Lock接口的ReentrantLock。它们都是独占式获取锁,也就是在同一时刻只有一个线程能够获取锁

而在一些业务场景中,大部分只是读数据,写数据很少,如果仅仅是读数据的话并不会影响数据正确性(出现脏读),而如果在这种业务场景下,依然使用独占锁的话,很显然这将是出现性能瓶颈的地方。

针对这种读多写少的情况,java还提供了另外一个实现Lock接口的ReentrantReadWriteLock(读写锁)。读写锁允许同一时刻被多个读线程访问,但是在写线程访问时,所有的读线程和其他的写线程都会被阻塞。写线程能够获取到锁的前提条件:没有任何读、写线程拿到锁。

写锁详解

写锁的获取

同步组件的实现聚合了同步器(AQS),并通过重写同步器(AQS)中的方法实现同步组件的同步语义。因此, 写锁的实现依然也是采用这种方式。在同一时刻写锁是不能被多个线程所获取,很显然写锁是独占式锁,而实现写锁的同步语义是通过重写AQS中的tryAcquire()方法实现的:

protected final boolean tryAcquire(int acquires) {
            /*
             * Walkthrough:
             * 1. If read count nonzero or write count nonzero
             *    and owner is a different thread, fail.
             * 2. If count would saturate, fail. (This can only
             *    happen if count is already nonzero.)
             * 3. Otherwise, this thread is eligible for lock if
             *    it is either a reentrant acquire or
             *    queue policy allows it. If so, update state
             *    and set owner.
             */
            Thread current = Thread.currentThread();
            // 获取当前同步状态
            int c = getState();
            // 获取写锁的获取次数
            int w = exclusiveCount(c);
            if (c != 0) {
                // (Note: if c != 0 and w == 0 then shared count != 0)
                 // 当读锁已被读线程获取或当前线程不是已经获取写锁的线程        
                 // 获取锁失败 
                if (w == 0 || current != getExclusiveOwnerThread())
                    return false;
                if (w + exclusiveCount(acquires) > MAX_COUNT)
                    throw new Error("Maximum lock count exceeded");
                // Reentrant acquire
                 // 当前线程获取写锁,并且支持可重入
                setState(c + acquires);
                return true;
            }
             // 写锁未被任何线程获取,当前线程获取写锁 
            if (writerShouldBlock() ||
                !compareAndSetState(c, c + acquires))
                return false;
             // 获取写锁成功
            setExclusiveOwnerThread(current);
            return true;
        }

这里有一个地方需要重点关注,exclusiveCount(c);,该方法源码为:

/*
         * Read vs write count extraction constants and functions.
         * Lock state is logically divided into two unsigned shorts:
         * The lower one representing the exclusive (writer) lock hold count,
         * and the upper the shared (reader) hold count.
         */

        static final int SHARED_SHIFT   = 16;
        static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
        static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
        static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;

        /** Returns the number of shared holds represented in count  */
        static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }
        /** Returns the number of exclusive holds represented in count  */
        static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }

其中EXCLUSIVE_MASK为: static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1; EXCLUSIVE _MASK为1左移16位然后减1,即为0x0000FFFF。而exclusiveCount()方法是将同步状态(state为int类型)与 0x0000FFFF相与,即取同步状态的低16位。那么低16位代表什么呢?根据exclusiveCount方法的注释为独占式获取的次数即写锁被获取的次数,现在就可以得出来一个结论:同步状态的低16位用来表示写锁的获取次数

sharedCount(int c)该方法是获取读锁被获取的次数,是将同步状态(int c)右移16次,即取同步状态的高16位,现在我们可以得出另外一个结论:同步状态的高16位用来表示读锁被获取的次数

android 读写控件 android 读写锁_android 读写控件

写锁获取逻辑法tryAcquire():当读锁已经被读线程获取或者写锁已被其他线程获取,则写线程获取失败;否则,当前同步状态没有被任何读写线程获取,当前线程获取写锁成功并支持重入,增加写状态。

写锁的释放

写锁释放逻辑同独占式锁的释放(realease)逻辑,即通过重写AQS的tryRelease()方法,源码为:\

/*
         * Note that tryRelease and tryAcquire can be called by
         * Conditions. So it is possible that their arguments contain
         * both read and write holds that are all released during a
         * condition wait and re-established in tryAcquire.
         */

        protected final boolean tryRelease(int releases) {
        	// 当前同步器是否在独占式锁下被线程占用,即表示是否被当前线程锁独占
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
                 // 同步状态减去写状态 
            int nextc = getState() - releases;
             // 当前写状态是否为0,为0则释放写锁
            boolean free = exclusiveCount(nextc) == 0;
            if (free)
                setExclusiveOwnerThread(null);
             // 不为0则更新同步状态 
            setState(nextc);
            return free;
        }

读锁详解

读锁的获取

读锁不是独占式锁,即同一时刻该锁可以被多个读线程获取也就是一种共享式锁。 按照之前对AQS介绍,实现共享式同步组件的同步语义需要通过重写AQS的tryAcquireShared()方法和tryReleaseShared() 方法。读锁的获取实现方法为:

protected final int tryAcquireShared(int unused) {
            /*
             * Walkthrough:
             * 1. If write lock held by another thread, fail.
             * 2. Otherwise, this thread is eligible for
             *    lock wrt state, so ask if it should block
             *    because of queue policy. If not, try
             *    to grant by CASing state and updating count.
             *    Note that step does not check for reentrant
             *    acquires, which is postponed to full version
             *    to avoid having to check hold count in
             *    the more typical non-reentrant case.
             * 3. If step 2 fails either because thread
             *    apparently not eligible or CAS fails or count
             *    saturated, chain to version with full retry loop.
             */
            Thread current = Thread.currentThread();
            int c = getState();
            // 如果写锁已经被获取并且获取写锁的线程不是当前线程    
            // 线程获取读锁失败并返回-1 
            if (exclusiveCount(c) != 0 &&
                getExclusiveOwnerThread() != current)
                return -1;
            int r = sharedCount(c);
            if (!readerShouldBlock() &&
                r < MAX_COUNT &&
                 // 当前线程获取读锁 
                compareAndSetState(c, c + SHARED_UNIT)) {
                  // 新增关于读锁的一些功能,比如getReadHoldCount()方法返回        
                  // 当前获取读锁的次数 
                if (r == 0) {
                    firstReader = current;
                    firstReaderHoldCount = 1;
                } else if (firstReader == current) {
                    firstReaderHoldCount++;
                } else {
                    HoldCounter rh = cachedHoldCounter;
                    if (rh == null || rh.tid != getThreadId(current))
                        cachedHoldCounter = rh = readHolds.get();
                    else if (rh.count == 0)
                        readHolds.set(rh);
                    rh.count++;
                }
                return 1;
            }
             // CAS失败或者已经获取读锁的线程再次重入 
            return fullTryAcquireShared(current);
        }

当写锁被其他线程获取后,读锁获取失败,否则获取成功利用CAS更新同步状态。另外,当前同步状态需要加上SHARED_UNIT((1 << SHARED_SHIFT)即0x00010000)的原因这是我们在上面所说的同步状态的高16位用来表示读锁被获取的次数。如果CAS失败或者已经获取读锁的线程再次获取读锁时,是靠fullTryAcquireShared()方法实现的。

/**
         * Full version of acquire for reads, that handles CAS misses
         * and reentrant reads not dealt with in tryAcquireShared.
         */
        final int fullTryAcquireShared(Thread current) {
            /*
             * This code is in part redundant with that in
             * tryAcquireShared but is simpler overall by not
             * complicating tryAcquireShared with interactions between
             * retries and lazily reading hold counts.
             */
            HoldCounter rh = null;
            for (;;) {
                int c = getState();
                if (exclusiveCount(c) != 0) {
                    if (getExclusiveOwnerThread() != current)
                        return -1;
                    // else we hold the exclusive lock; blocking here
                    // would cause deadlock.
                } else if (readerShouldBlock()) {
                    // Make sure we're not acquiring read lock reentrantly
                    if (firstReader == current) {
                        // assert firstReaderHoldCount > 0;
                    } else {
                        if (rh == null) {
                            rh = cachedHoldCounter;
                            if (rh == null || rh.tid != getThreadId(current)) {
                                rh = readHolds.get();
                                if (rh.count == 0)
                                    readHolds.remove();
                            }
                        }
                        if (rh.count == 0)
                            return -1;
                    }
                }
                if (sharedCount(c) == MAX_COUNT)
                    throw new Error("Maximum lock count exceeded");
                if (compareAndSetState(c, c + SHARED_UNIT)) {
                    if (sharedCount(c) == 0) {
                        firstReader = current;
                        firstReaderHoldCount = 1;
                    } else if (firstReader == current) {
                        firstReaderHoldCount++;
                    } else {
                        if (rh == null)
                            rh = cachedHoldCounter;
                        if (rh == null || rh.tid != getThreadId(current))
                            rh = readHolds.get();
                        else if (rh.count == 0)
                            readHolds.set(rh);
                        rh.count++;
                        cachedHoldCounter = rh; // cache for release
                    }
                    return 1;
                }
            }
        }

读锁的释放

读锁释放的实现主要通过方法tryReleaseShared(),源码为:

protected final boolean tryReleaseShared(int unused) {
            Thread current = Thread.currentThread();
             // 前面还是为了实现getHoldCount等新功能 
            if (firstReader == current) {
                // assert firstReaderHoldCount > 0;
                if (firstReaderHoldCount == 1)
                    firstReader = null;
                else
                    firstReaderHoldCount--;
            } else {
                HoldCounter rh = cachedHoldCounter;
                if (rh == null || rh.tid != getThreadId(current))
                    rh = readHolds.get();
                int count = rh.count;
                if (count <= 1) {
                    readHolds.remove();
                    if (count <= 0)
                        throw unmatchedUnlockException();
                }
                --rh.count;
            }
            for (;;) {
                int c = getState();
                 // 读锁释放,将同步状态减去读状态即可 
                int nextc = c - SHARED_UNIT;
                if (compareAndSetState(c, nextc))
                    // Releasing the read lock has no effect on readers,
                    // but it may allow waiting writers to proceed if
                    // both read and write locks are now free.
                    return nextc == 0;
            }
        }

使用读写锁实现缓存

import java.awt.peer.LabelPeer;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

/*
    读写锁实现缓存
 */
public class Cache {
    static Map<String,Object> map = new HashMap<>();
    static ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
    static Lock readLock = rwl.readLock();
    static Lock writeLock = rwl.writeLock();

    /**
     * 线程安全的根据一个key获取value
     * @param key
     * @return
     */
    public static final Object get(String key){
        readLock.lock();
        try{
            return map.get(key);
        }finally {
            readLock.unlock();
        }
    }
    /**
     * 线程安全的根据key设置value,并返回旧的value
     * @param key
     * @param value
     * @return
     */

    public static final Object put(String key,Object value) {        
        writeLock.lock();        
        try {            
            return map.put(key,value);        
        }finally {            
            writeLock.unlock();        
        }    
    }    
    
    /**     
     * 线程安全的清空所有value     
     */    
    public static final void clear() {        
        writeLock.lock();        
        try {            
            map.clear();        
        }finally {
            writeLock.unlock();        
        }    
    }
}

上述代码使用Cache组合一个非线程安全的HashMap作为缓存的实现,同时使用读写锁保证Cache的线程安全性。
在get方法中,需要获取读锁,使得并发访问该方法时不会被阻塞。set方法与clear方法在更新HashMap时必须获取写锁,当获取写锁后,其他线程对于读锁和写锁的获取均被阻塞,而只有写锁被释放后,其他读写操作才能够继续。 Cache使用读写锁提升读操作的并发性,也保证每次写操作对所有读写操作的可见性。

锁降级

读写锁支持锁降级,写锁能够降级成为读锁;不支持锁升级,读锁不能升级为写锁。

void processCachedData() {
    rwl.readLock().lock();
    if (!cacheValid) {
        // Must release read lock before acquiring write lock
        rwl.readLock().unlock();
        rwl.writeLock().lock();
        try {
            // Recheck state because another thread might have
            // acquired write lock and changed state before we did.
            if (!cacheValid) {
                data = ...
                cacheValid = true;
            }
            // Downgrade by acquiring read lock before releasing write lock
            rwl.readLock().lock();
        } finally {
            rwl.writeLock().unlock(); // Unlock write, still hold read
        }      
    }

    try {        
        use(data);      
    } finally {        
        rwl.readLock().unlock();      
    }    
}