html符号总汇:​​https://blog.csdn.net/u012241616/article/details/114867161​

数学相关符号

描述

符号/显示

UNICODE

HEX CODE

HTML CODE

HTML ENTITY

CSS CODE

Plus Sign

+

U+0002B

+

+

+

\002B

Minus Sign

U+02212

−

−

−

\2212

Multiplication Sign

×

U+000D7

×

×

×

\00D7

Division Sign

÷

U+000F7

÷

÷

÷

\00F7

Equal Sign

=

U+0003D

=

=

=

\003D

Not Equal To Sign

U+02260

≠

≠

≠

\2260

Plus or Minus Sign

±

U+000B1

±

±

±

\00B1

Not Sign

¬

U+000AC

¬

¬

¬

\00AC

Less-Than Sign

<

U+0003C

&#x3c;

&#60;

&lt;

\003C

Greater-Than Sign

>

U+0003E

&#x3e;

&#62;

&gt;

\003E

Equal to or Less-Than Sign

U+022DC

&#x22DC;

&#8924;

 

\22DC

Equal to or Greater-Than Sign

U+022DD

&#x22DD;

&#8925;

 

\22DD

Degree Sign

°

U+000B0

&#xb0;

&#176;

&deg;

\00B0

Superscript One

¹

U+000B9

&#xb9;

&#185;

&sup1;

\00B9

Superscript Two

²

U+000B2

&#xb2;

&#178;

&sup2;

\00B2

Superscript Three

³

U+000B3

&#xb3;

&#179;

&sup3;

\00B3

Function

ƒ

U+00192

&#x192;

&#402;

&fnof;

\0192

Percent Sign

%

U+00025

&#x25;

&#37;

&percnt;

\0025

Per Mille Sign

U+00089

&#x89;

&#137;

&permil;

\0089

Per Ten Thousand Sign

U+02031

&#x2031;

&#8241;

&pertenk;

\2031

For All

U+02200

&#x2200;

&#8704;

&forall;

\2200

Complement

U+02201

&#x2201;

&#8705;

&comp;

\2201

Partial Differential

U+02202

&#x2202;

&#8706;

&part;

\2202

There Exists

U+02203

&#x2203;

&#8707;

&exist;

\2203

There Does Not Exist

U+02204

&#x2204;

&#8708;

&nexist;

\2204

Empty Set

U+02205

&#x2205;

&#8709;

&empty;

\2205

Increment

U+02206

&#x2206;

&#8710;

 

\2206

Nabla

U+02207

&#x2207;

&#8711;

&nabla;

\2207

Element Of

U+02208

&#x2208;

&#8712;

&isin;

\2208

Not an Element Of

U+02209

&#x2209;

&#8713;

&notin;

\2209

Small Element Of

U+0220A

&#x220A;

&#8714;

 

\220A

Contains as Member

U+0220B

&#x220B;

&#8715;

&ni;

\220B

Does Not Contain as Member

U+0220C

&#x220C;

&#8716;

&notni;

\220C

Small Contains as Member

U+0220D

&#x220D;

&#8717;

 

\220D

End of Proof

U+0220E

&#x220E;

&#8718;

 

\220E

N-Ary Product

U+0220F

&#x220F;

&#8719;

&prod;

\220F

N-Ary Coproduct

U+02210

&#x2210;

&#8720;

&coprod;

\2210

N-Ary Summation

U+02211

&#x2211;

&#8721;

&sum;

\2211

Minus-or-Plus Sign

U+02213

&#x2213;

&#8723;

&mnplus;

\2213

Dot Plus

U+02214

&#x2214;

&#8724;

&plusdo;

\2214

Division Slash

U+02215

&#x2215;

&#8725;

 

\2215

Set Minus

U+02216

&#x2216;

&#8726;

&setminus;

\2216

Asterisk Operator

U+02217

&#x2217;

&#8727;

&lowast;

\2217

Ring Operator

U+02218

&#x2218;

&#8728;

&compfn;

\2218

Bullet Operator

U+02219

&#x2219;

&#8729;

 

\2219

Square Root

U+0221A

&#x221A;

&#8730;

&radic;

\221A

Cube Root

U+0221B

&#x221B;

&#8731;

 

\221B

Fourth Root

U+0221C

&#x221C;

&#8732;

 

\221C

Proportional To

U+0221D

&#x221D;

&#8733;

&prop;

\221D

Infinity

U+0221E

&#x221E;

&#8734;

&infin;

\221E

Right Angle

U+0221F

&#x221F;

&#8735;

&angrt;

\221F

Angle

U+02220

&#x2220;

&#8736;

&ang;

\2220

Measured Angle

U+02221

&#x2221;

&#8737;

&angmsd;

\2221

Spherical Angle

U+02222

&#x2222;

&#8738;

&angsph;

\2222

Divides

U+02223

&#x2223;

&#8739;

&mid;

\2223

Does Not Divide

U+02224

&#x2224;

&#8740;

&nmid;

\2224

Parallel To

U+02225

&#x2225;

&#8741;

&parallel;

\2225

Not Parallel To

U+02226

&#x2226;

&#8742;

&npar;

\2226

Logical And

U+02227

&#x2227;

&#8743;

&and;

\2227

Logical Or

U+02228

&#x2228;

&#8744;

&or;

\2228

Intersection

U+02229

&#x2229;

&#8745;

&cap;

\2229

Union

U+0222A

&#x222A;

&#8746;

&cup;

\222A

Integral

U+0222B

&#x222B;

&#8747;

&int;

\222B

Double Integral

U+0222C

&#x222C;

&#8748;

&Int;

\222C

Triple Integral

U+0222D

&#x222D;

&#8749;

&iiint;

\222D

Contour Integral

U+0222E

&#x222E;

&#8750;

&conint;

\222E

Surface Integral

U+0222F

&#x222F;

&#8751;

&Conint;

\222F

Volume Integral

U+02230

&#x2230;

&#8752;

&Cconint;

\2230

Clockwise Integral

U+02231

&#x2231;

&#8753;

&cwint;

\2231

Clockwise Contour Integral

U+02232

&#x2232;

&#8754;

&cwconint;

\2232

Anticlockwise Contour Integral

U+02233

&#x2233;

&#8755;

&awconint;

\2233

Therefore

U+02234

&#x2234;

&#8756;

&there4;

\2234

Because

U+02235

&#x2235;

&#8757;

&because;

\2235

Ratio

U+02236

&#x2236;

&#8758;

&ratio;

\2236

Proportion

U+02237

&#x2237;

&#8759;

&Colon;

\2237

Dot Minus

U+02238

&#x2238;

&#8760;

&minusd;

\2238

Excess

U+02239

&#x2239;

&#8761;

 

\2239

Geometric Proportion

U+0223A

&#x223A;

&#8762;

&mDDot;

\223A

Homothetic

U+0223B

&#x223B;

&#8763;

&homtht;

\223B

Tilde Operator

U+0223C

&#x223C;

&#8764;

&sim;

\223C

Reversed Tilde

U+0223D

&#x223D;

&#8765;

&bsim;

\223D

Inverted Lazy S

U+0223E

&#x223E;

&#8766;

&ac;

\223E

Sine Wave

U+0223F

&#x223F;

&#8767;

&acd;

\223F

Wreath Product

U+02240

&#x2240;

&#8768;

&wreath;

\2240

Not Tilde

U+02241

&#x2241;

&#8769;

&nsim;

\2241

Minus Tilde

U+02242

&#x2242;

&#8770;

&esim;

\2242

Asymptotically Equal To

U+02243

&#x2243;

&#8771;

&sime;

\2243

Not Asymptotically Equal To

U+02244

&#x2244;

&#8772;

&nsime;

\2244

Approximately Equal To

U+02245

&#x2245;

&#8773;

&cong;

\2245

Approximately but Not Actually Equal To

U+02246

&#x2246;

&#8774;

&simne;

\2246

Neither Approximately Nor Actually Equal To

U+02247

&#x2247;

&#8775;

&ncong;

\2247

Almost Equal To

U+02248

&#x2248;

&#8776;

&asymp;

\2248

Not Almost Equal To

U+02249

&#x2249;

&#8777;

&nap;

\2249

Almost Equal or Equal To

U+0224A

&#x224A;

&#8778;

&approxeq;

\224A

Triple Tilde

U+0224B

&#x224B;

&#8779;

&apid;

\224B

All Equal To

U+0224C

&#x224C;

&#8780;

&bcong;

\224C

Equivalent To

U+0224D

&#x224D;

&#8781;

&asympeq;

\224D

Geometrically Equivalent To

U+0224E

&#x224E;

&#8782;

&bump;

\224E

Difference Between

U+0224F

&#x224F;

&#8783;

&bumpe;

\224F

Approaches the Limit

U+02250

&#x2250;

&#8784;

&esdot;

\2250

Geometrically Equal To

U+02251

&#x2251;

&#8785;

&eDot;

\2251

Approximately Equal to or the Image Of

U+02252

&#x2252;

&#8786;

&efDot;

\2252

Image of or Approximately Equal To

U+02253

&#x2253;

&#8787;

&erDot;

\2253

Colon Equals

U+02254

&#x2254;

&#8788;

&colone;

\2254

Equals Colon

U+02255

&#x2255;

&#8789;

&ecolon;

\2255

Ring in Equal To

U+02256

&#x2256;

&#8790;

&ecir;

\2256

Ring Equal To

U+02257

&#x2257;

&#8791;

&cire;

\2257

Corresponds To

U+02258

&#x2258;

&#8792;

 

\2258

Estimates

U+02259

&#x2259;

&#8793;

&wedgeq;

\2259

Equiangular To

U+0225A

&#x225A;

&#8794;

&veeeq;

\225A

Star Equals

U+0225B

&#x225B;

&#8795;

 

\225B

Delta Equal To

U+0225C

&#x225C;

&#8796;

&trie;

\225C

Equal to by Definition

U+0225D

&#x225D;

&#8797;

 

\225D

Measured By

U+0225E

&#x225E;

&#8798;

 

\225E

Questioned Equal To

U+0225F

&#x225F;

&#8799;

&equest;

\225F

Identical To

U+02261

&#x2261;

&#8801;

&equiv;

\2261

Not Identical To

U+02262

&#x2262;

&#8802;

&nequiv;

\2262

Strictly Equivalent To

U+02263

&#x2263;

&#8803;

 

\2263

Less-Than or Equal To

U+02264

&#x2264;

&#8804;

&le;

\2264

Greater-Than or Equal To

U+02265

&#x2265;

&#8805;

&ge;

\2265

Less-Than Over Equal To

U+02266

&#x2266;

&#8806;

&lE;

\2266

Greater-Than Over Equal To

U+02267

&#x2267;

&#8807;

&gE;

\2267

Less-Than but Not Equal To

U+02268

&#x2268;

&#8808;

&lnE;

\2268

Greater-Than but Not Equal To

U+02269

&#x2269;

&#8809;

&gnE;

\2269

Much Less-Than

U+0226A

&#x226A;

&#8810;

&Lt;

\226A

Much Greater-Than

U+0226B

&#x226B;

&#8811;

&Gt;

\226B

Between

U+0226C

&#x226C;

&#8812;

&between;

\226C

Not Equivalent To

U+0226D

&#x226D;

&#8813;

&NotCupCap;

\226D

Not Less-Than

U+0226E

&#x226E;

&#8814;

&nlt;

\226E

Not Greater-Than

U+0226F

&#x226F;

&#8815;

&ngt;

\226F

Neither Less-Than Nor Equal To

U+02270

&#x2270;

&#8816;

&nle;

\2270

Neither Greater-Than Nor Equal To

U+02271

&#x2271;

&#8817;

&nge;

\2271

Less-Than or Equivalent To

U+02272

&#x2272;

&#8818;

&lsim;

\2272

Greater-Than or Equivalent To

U+02273

&#x2273;

&#8819;

&gsim;

\2273

Neither Less-Than Nor Equivalent To

U+02274

&#x2274;

&#8820;

&nlsim;

\2274

Neither Greater-Than Nor Equivalent To

U+02275

&#x2275;

&#8821;

&ngsim;

\2275

Less-Than or Greater-Than

U+02276

&#x2276;

&#8822;

&lg;

\2276

Greater-Than or Less-Than

U+02277

&#x2277;

&#8823;

&gl;

\2277

Neither Less-Than Nor Greater-Than

U+02278

&#x2278;

&#8824;

&ntlg;

\2278

Neither Greater-Than Nor Less-Than

U+02279

&#x2279;

&#8825;

&ntgl;

\2279

Precedes

U+0227A

&#x227A;

&#8826;

&pr;

\227A

Succeeds

U+0227B

&#x227B;

&#8827;

&sc;

\227B

Precedes or Equal To

U+0227C

&#x227C;

&#8828;

&prcue;

\227C

Succeeds or Equal To

U+0227D

&#x227D;

&#8829;

&sccue;

\227D

Precedes or Equivalent To

U+0227E

&#x227E;

&#8830;

&prsim;

\227E

Succeeds or Equivalent To

U+0227F

&#x227F;

&#8831;

&scsim;

\227F

Does Not Precede

U+02280

&#x2280;

&#8832;

&npr;

\2280

Does Not Succeed

U+02281

&#x2281;

&#8833;

&nsc;

\2281

Subset Of

U+02282

&#x2282;

&#8834;

&sub;

\2282

Superset Of

U+02283

&#x2283;

&#8835;

&sup;

\2283

Not a Subset Of

U+02284

&#x2284;

&#8836;

&nsub;

\2284

Not a Superset Of

U+02285

&#x2285;

&#8837;

&nsup;

\2285

Subset of or Equal To

U+02286

&#x2286;

&#8838;

&sube;

\2286

Superset of or Equal To

U+02287

&#x2287;

&#8839;

&supe;

\2287

Neither a Subset of Nor Equal To

U+02288

&#x2288;

&#8840;

&nsube;

\2288

Neither a Superset of Nor Equal To

U+02289

&#x2289;

&#8841;

&nsupe;

\2289

Subset of With Not Equal To

U+0228A

&#x228A;

&#8842;

&subne;

\228A

Superset of With Not Equal To

U+0228B

&#x228B;

&#8843;

&supne;

\228B

Multiset

U+0228C

&#x228C;

&#8844;

 

\228C

Multiset Multiplication

U+0228D

&#x228D;

&#8845;

&cupdot;

\228D

Multiset Union

U+0228E

&#x228E;

&#8846;

&uplus;

\228E

Square Image Of

U+0228F

&#x228F;

&#8847;

&sqsub;

\228F

Square Original Of

U+02290

&#x2290;

&#8848;

&sqsup;

\2290

Square Image of or Equal To

U+02291

&#x2291;

&#8849;

&sqsube;

\2291

Square Original of or Equal To

U+02292

&#x2292;

&#8850;

&sqsupe;

\2292

Square Cap

U+02293

&#x2293;

&#8851;

&sqcap;

\2293

Square Cup

U+02294

&#x2294;

&#8852;

&sqcup;

\2294

Circled Plus

U+02295

&#x2295;

&#8853;

&oplus;

\2295

Circled Minus

U+02296

&#x2296;

&#8854;

&ominus;

\2296

Circled Times

U+02297

&#x2297;

&#8855;

&otimes;

\2297

Circled Division Slash

U+02298

&#x2298;

&#8856;

&osol;

\2298

Circled Dot Operator

U+02299

&#x2299;

&#8857;

&odot;

\2299

Circled Ring Operator

U+0229A

&#x229A;

&#8858;

&ocir;

\229A

Circled Asterisk Operator

U+0229B

&#x229B;

&#8859;

&oast;

\229B

Circled Equals

U+0229C

&#x229C;

&#8860;

 

\229C

Circled Dash

U+0229D

&#x229D;

&#8861;

&odash;

\229D

Squared Plus

U+0229E

&#x229E;

&#8862;

&plusb;

\229E

Squared Minus

U+0229F

&#x229F;

&#8863;

&minusb;

\229F

Squared Times

U+022A0

&#x22A0;

&#8864;

&timesb;

\22A0

Squared Dot Operator

U+022A1

&#x22A1;

&#8865;

&sdotb;

\22A1

Right Tack

U+022A2

&#x22A2;

&#8866;

&vdash;

\22A2

Left Tack

U+022A3

&#x22A3;

&#8867;

&dashv;

\22A3

Down Tack

U+022A4

&#x22A4;

&#8868;

&top;

\22A4

Up Tack

U+022A5

&#x22A5;

&#8869;

&perp;

\22A5

Assertion

U+022A6

&#x22A6;

&#8870;

 

\22A6

Models

U+022A7

&#x22A7;

&#8871;

&models;

\22A7

True

U+022A8

&#x22A8;

&#8872;

&vDash;

\22A8

Forces

U+022A9

&#x22A9;

&#8873;

&Vdash;

\22A9

Triple Vertical Bar Right Turnstile

U+022AA

&#x22AA;

&#8874;

&Vvdash;

\22AA

Double Vertical Bar Double Right Turnstile

U+022AB

&#x22AB;

&#8875;

&VDash;

\22AB

Does Not Prove

U+022AC

&#x22AC;

&#8876;

&nvdash;

\22AC

Not True

U+022AD

&#x22AD;

&#8877;

&nvDash;

\22AD

Does Not Force

U+022AE

&#x22AE;

&#8878;

&nVdash;

\22AE

Negated Double Vertical Bar Double Right Turnstile

U+022AF

&#x22AF;

&#8879;

&nVDash;

\22AF

Precedes Under Relation

U+022B0

&#x22B0;

&#8880;

&prurel;

\22B0

Succeeds Under Relation

U+022B1

&#x22B1;

&#8881;

 

\22B1

Normal Subgroup Of

U+022B2

&#x22B2;

&#8882;

&vltri;

\22B2

Contains as Normal Subgroup

U+022B3

&#x22B3;

&#8883;

&vrtri;

\22B3

Normal Subgroup of or Equal To

U+022B4

&#x22B4;

&#8884;

&ltrie;

\22B4

Contains as Normal Subgroup or Equal To

U+022B5

&#x22B5;

&#8885;

&rtrie;

\22B5

Original Of

U+022B6

&#x22B6;

&#8886;

&origof;

\22B6

Image Of

U+022B7

&#x22B7;

&#8887;

&imof;

\22B7

Multimap

U+022B8

&#x22B8;

&#8888;

&mumap;

\22B8

Hermitian Conjugate Matrix

U+022B9

&#x22B9;

&#8889;

&hercon;

\22B9

Intercalate

U+022BA

&#x22BA;

&#8890;

&intcal;

\22BA

Xor

U+022BB

&#x22BB;

&#8891;

&veebar;

\22BB

Nand

U+022BC

&#x22BC;

&#8892;

 

\22BC

Nor

U+022BD

&#x22BD;

&#8893;

&barvee;

\22BD

Right Angle With Arc

U+022BE

&#x22BE;

&#8894;

&angrtvb;

\22BE

Right Triangle

U+022BF

&#x22BF;

&#8895;

&lrtri;

\22BF

N-Ary Logical And

U+022C0

&#x22C0;

&#8896;

&xwedge;

\22C0

N-Ary Logical Or

U+022C1

&#x22C1;

&#8897;

&xvee;

\22C1

N-Ary Intersection

U+022C2

&#x22C2;

&#8898;

&xcap;

\22C2

N-Ary Union

U+022C3

&#x22C3;

&#8899;

&xcup;

\22C3

Diamond Operator

U+022C4

&#x22C4;

&#8900;

&diamond;

\22C4

Dot Operator

U+022C5

&#x22C5;

&#8901;

&sdot;

\22C5

Star Operator

U+022C6

&#x22C6;

&#8902;

&Star;

\22C6

Division Times

U+022C7

&#x22C7;

&#8903;

&divonx;

\22C7

Bowtie

U+022C8

&#x22C8;

&#8904;

&bowtie;

\22C8

Left Normal Factor Semidirect Product

U+022C9

&#x22C9;

&#8905;

&ltimes;

\22C9

Right Normal Factor Semidirect Product

U+022CA

&#x22CA;

&#8906;

&rtimes;

\22CA

Left Semidirect Product

U+022CB

&#x22CB;

&#8907;

&lthree;

\22CB

Right Semidirect Product

U+022CC

&#x22CC;

&#8908;

&rthree;

\22CC

Reversed Tilde Equals

U+022CD

&#x22CD;

&#8909;

&bsime;

\22CD

Curly Logical Or

U+022CE

&#x22CE;

&#8910;

&cuvee;

\22CE

Curly Logical And

U+022CF

&#x22CF;

&#8911;

&cuwed;

\22CF

Double Subset

U+022D0

&#x22D0;

&#8912;

&Sub;

\22D0

Double Superset

U+022D1

&#x22D1;

&#8913;

&Sup;

\22D1

Double Intersection

U+022D2

&#x22D2;

&#8914;

&Cap;

\22D2

Double Union

U+022D3

&#x22D3;

&#8915;

&Cup;

\22D3

Pitchfork

U+022D4

&#x22D4;

&#8916;

&fork;

\22D4

Equal and Parallel To

U+022D5

&#x22D5;

&#8917;

&epar;

\22D5

Less-Than With Dot

U+022D6

&#x22D6;

&#8918;

&ltdot;

\22D6

Greater-Than With Dot

U+022D7

&#x22D7;

&#8919;

&gtdot;

\22D7

Very Much Less-Than

U+022D8

&#x22D8;

&#8920;

&Ll;

\22D8

Very Much Greater-Than

U+022D9

&#x22D9;

&#8921;

&Gg;

\22D9

Less-Than Equal to or Greater-Than

U+022DA

&#x22DA;

&#8922;

&leg;

\22DA

Greater-Than Equal to or Less-Than

U+022DB

&#x22DB;

&#8923;

&gel;

\22DB

Equal to or Precedes

U+022DE

&#x22DE;

&#8926;

&cuepr;

\22DE

Equal to or Succeeds

U+022DF

&#x22DF;

&#8927;

&cuesc;

\22DF

Does Not Precede or Equal

U+022E0

&#x22E0;

&#8928;

&nprcue;

\22E0

Does Not Succeed or Equal

U+022E1

&#x22E1;

&#8929;

&nsccue;

\22E1

Not Square Image of or Equal To

U+022E2

&#x22E2;

&#8930;

&nsqsube;

\22E2

Not Square Original of or Equal To

U+022E3

&#x22E3;

&#8931;

&nsqsupe;

\22E3

Square Image of or Not Equal To

U+022E4

&#x22E4;

&#8932;

 

\22E4

Square Original of or Not Equal To

U+022E5

&#x22E5;

&#8933;

 

\22E5

Less-Than but Not Equivalent To

U+022E6

&#x22E6;

&#8934;

&lnsim;

\22E6

Greater-Than but Not Equivalent To

U+022E7

&#x22E7;

&#8935;

&gnsim;

\22E7

Precedes but Not Equivalent To

U+022E8

&#x22E8;

&#8936;

&prnsim;

\22E8

Succeeds but Not Equivalent To

U+022E9

&#x22E9;

&#8937;

&scnsim;

\22E9

Not Normal Subgroup Of

U+022EA

&#x22EA;

&#8938;

&nltri;

\22EA

Does Not Contain as Normal Subgroup

U+022EB

&#x22EB;

&#8939;

&nrtri;

\22EB

Not Normal Subgroup of or Equal To

U+022EC

&#x22EC;

&#8940;

&nltrie;

\22EC

Does Not Contain as Normal Subgroup or Equal

U+022ED

&#x22ED;

&#8941;

&nrtrie;

\22ED

Vertical Ellipsis

U+022EE

&#x22EE;

&#8942;

&vellip;

\22EE

Midline Horizontal Ellipsis

U+022EF

&#x22EF;

&#8943;

&ctdot;

\22EF

Up Right Diagonal Ellipsis

U+022F0

&#x22F0;

&#8944;

&utdot;

\22F0

Down Right Diagonal Ellipsis

U+022F1

&#x22F1;

&#8945;

&dtdot;

\22F1

Element of With Long Horizontal Stroke

U+022F2

&#x22F2;

&#8946;

&disin;

\22F2

Element of With Vertical Bar at End of Horizontal Stroke

U+022F3

&#x22F3;

&#8947;

&isinsv;

\22F3

Small Element of With Vertical Bar at End of Horizontal Stroke

U+022F4

&#x22F4;

&#8948;

&isins;

\22F4

Element of With Dot Above

U+022F5

&#x22F5;

&#8949;

&isindot;

\22F5

Element of With Overbar

U+022F6

&#x22F6;

&#8950;

&notinvc;

\22F6

Small Element of With Overbar

U+022F7

&#x22F7;

&#8951;

&notinvb;

\22F7

Element of With Underbar

U+022F8

&#x22F8;

&#8952;

 

\22F8

Element of With Two Horizontal Strokes

U+022F9

&#x22F9;

&#8953;

&isinE;

\22F9

Contains With Long Horizontal Stroke

U+022FA

&#x22FA;

&#8954;

&nisd;

\22FA

Contains With Vertical Bar at End of Horizontal Stroke

U+022FB

&#x22FB;

&#8955;

&xnis;

\22FB

Small Contains With Vertical Bar at End of Horizontal Stroke

U+022FC

&#x22FC;

&#8956;

&nis;

\22FC

Contains With Overbar

U+022FD

&#x22FD;

&#8957;

&notnivc;

\22FD

Small Contains With Overbar

U+022FE

&#x22FE;

&#8958;

&notnivb;

\22FE

Z Notation Bag Membership

U+022FF

&#x22FF;

&#8959;

 

\22FF

Superscript Zero

U+02070

&#x2070;

&#8304;

 

\2070

Superscript Latin Small Letter I

U+02071

&#x2071;

&#8305;

 

\2071

Superscript Four

U+02074

&#x2074;

&#8308;

 

\2074

Superscript Five

U+02075

&#x2075;

&#8309;

 

\2075

Superscript Six

U+02076

&#x2076;

&#8310;

 

\2076

Superscript Seven

U+02077

&#x2077;

&#8311;

 

\2077

Superscript Eight

U+02078

&#x2078;

&#8312;

 

\2078

Superscript Nine

U+02079

&#x2079;

&#8313;

 

\2079

Superscript Plus Sign

U+0207A

&#x207A;

&#8314;

 

\207A

Superscript Minus

U+0207B

&#x207B;

&#8315;

 

\207B

Superscript Equals Sign

U+0207C

&#x207C;

&#8316;

 

\207C

Superscript Left Parenthesis

U+0207D

&#x207D;

&#8317;

 

\207D

Superscript Right Parenthesis

U+0207E

&#x207E;

&#8318;

 

\207E

Superscript Latin Small Letter N

U+0207F

&#x207F;

&#8319;

 

\207F

Subscript Zero

U+02080

&#x2080;

&#8320;

 

\2080

Subscript One

U+02081

&#x2081;

&#8321;

 

\2081

Subscript Two

U+02082

&#x2082;

&#8322;

 

\2082

Subscript Three

U+02083

&#x2083;

&#8323;

 

\2083

Subscript Four

U+02084

&#x2084;

&#8324;

 

\2084

Subscript Five

U+02085

&#x2085;

&#8325;

 

\2085

Subscript Six

U+02086

&#x2086;

&#8326;

 

\2086

Subscript Seven

U+02087

&#x2087;

&#8327;

 

\2087

Subscript Eight

U+02088

&#x2088;

&#8328;

 

\2088

Subscript Nine

U+02089

&#x2089;

&#8329;

 

\2089

Subscript Plus Sign

U+0208A

&#x208A;

&#8330;

 

\208A

Subscript Minus

U+0208B

&#x208B;

&#8331;

 

\208B

Subscript Equals Sign

U+0208C

&#x208C;

&#8332;

 

\208C

Subscript Left Parenthesis

U+0208D

&#x208D;

&#8333;

 

\208D

Subscript Right Parenthesis

U+0208E

&#x208E;

&#8334;

 

\208E

Latin Subscript Small Letter A

U+02090

&#x2090;

&#8336;

 

\2090

Latin Subscript Small Letter E

U+02091

&#x2091;

&#8337;

 

\2091

Latin Subscript Small Letter O

U+02092

&#x2092;

&#8338;

 

\2092

Latin Subscript Small Letter X

U+02093

&#x2093;

&#8339;

 

\2093

Latin Subscript Small Letter Schwa

U+02094

&#x2094;

&#8340;

 

\2094