argument of the maximum/minimum

arg max f(x): 当f(x)取最大值时,x的取值

arg min f(x):当f(x)取最小值时,x的取值

 

表示使目标函数取最小值时的变量值
From Wikipedia

In mathematics, arg max (or argmax) stands for the argument of the maximum, that is to say, the set of points of the given argument for which the value of the given expression attains its maximum value:[note 1]

数学符号arg含义_数学

In other words,

数学符号arg含义_数学_02

is the set of values of x for which f(x) has the largest value M. For example, if f(x) is 1−|x|, then it attains its maximum value of 1 at x = 0 and only there, so 数学符号arg含义_数学_03.


Equivalently, if M is the maximum of f, then the arg max is the level set of the maximum:

数学符号arg含义_数学_04

If the maximum is reached at a single value, then one refers to the point as the arg max, meaning we define the arg max as a point, not a set of points. So, for example,

数学符号arg含义_数学_05                     //只有一个值使函数取最大值,则arg为该值

(rather than the singleton set {5}), since the maximum value of x(10 − x) is 25, which happens when x = 5.[note 2]

However, in case the maximum is reached at many values, arg max is a set of points.

Then, we have for example

数学符号arg含义_数学_06                      //若多个值使函数取最大值,则arg为集合

since the maximum value of cos(x) is 1, which happens on this interval when x = 0, 2π or 4π. On the whole real line, the arg max is 数学符号arg含义_数学_07

arg min (or argmin) is defined analogously.

Note also that functions do not in general attain a maximum value, and hence will in general not have an arg max: 数学符号arg含义_数学_08 is undefined, as x is unbounded on the real line. However, by the extreme value theorem (or the classical compactness argument), a continuous function on a compact interval has a maximum, and thus an arg max.                  //若无法取到最大值,无定义