数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。在训练模型时使用到此函数,用来把训练数据分成多个小组,此函数每次抛出一组数据。直至把所有的数据都抛出。就是做一个数据的初始化。

torch.utils.data.DataLoader()_迭代

生成迭代数据非常方便,请看如下示例:

"""
    批训练,把数据变成一小批一小批数据进行训练。
    DataLoader就是用来包装所使用的数据,每次抛出一批数据
"""
import torch
import torch.utils.data as Data

BATCH_SIZE = 5

x = torch.linspace(1, 10, 10)
y = torch.linspace(10, 1, 10)
# 把数据放在数据库中
torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(
    # 从数据库中每次抽出batch size个样本
    dataset=torch_dataset,
    batch_size=BATCH_SIZE,
    shuffle=True,
    num_workers=2,
)


def show_batch():
    for epoch in range(3):
        for step, (batch_x, batch_y) in enumerate(loader):
            # training


            print("steop:{}, batch_x:{}, batch_y:{}".format(step, batch_x, batch_y))


if __name__ == '__main__':
    show_batch()

结果:

torch.utils.data.DataLoader()_迭代_02

我们来看一下变量类型:

torch.utils.data.DataLoader()_数据集_03