class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')[source]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N,Cin,H,W) and output (N,Cout​,Hout​,Wout​) can be precisely described as:

                           torch.nn.Conv2d_2d

where x is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H is a height of input planes in pixels, and W is width in pixels.

  • stride controls the stride for the cross-correlation, a single number or a tuple.

  • padding controls the amount of implicit zero-paddings on both sides for padding number of points for each dimension.

  • dilation controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of what dilation does.

where ⋆\star⋆ is the valid 2D cross-correlation operator, NNN is a batch size, CCC denotes a number of channels, HHH is a height of input planes in pixels, and WWW is width in pixels.

  • stride controls the stride for the cross-correlation, a single number or a tuple.

  • padding controls the amount of implicit zero-paddings on both sides for padding number of points for each dimension.

  • dilation controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of what dilation does.

  • groups controls the connections between inputs and outputs. in_channels and out_channels must both be divisible by groups. For example,

    • At groups=1, all inputs are convolved to all outputs.

    • At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.

    • At groups= in_channels, each input channel is convolved with its own set of filters, of size: torch.nn.Conv2d_2d_02

The parameters kernel_size, stride, padding, dilation can either be:

  • a single int – in which case the same value is used for the height and width dimension

  • a tuple of two ints – in which case, the first int is used for the height dimension, and the second int for the width dimension

Note

Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to add proper padding.

Note

When groups == in_channels and out_channels == K * in_channels, where K is a positive integer, this operation is also termed in literature as depthwise convolution.

In other words, for an input of size (N,Cin,Hin,Win) , a depthwise convolution with a depthwise multiplier K, can be constructed by argumentstorch.nn.Conv2d_2d_03

Note

In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting torch.backends.cudnn.deterministic = True. Please see the notes on Reproducibility for background.

 

Parameters

  • in_channels (int) – Number of channels in the input image

  • out_channels (int) – Number of channels produced by the convolution

  • kernel_size (int or tuple) – Size of the convolving kernel

  • stride (int or tuple, optional) – Stride of the convolution. Default: 1

  • padding (int or tuple, optional) – Zero-padding added to both sides of the input. Default: 0

  • padding_mode (string, optional) – 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

  • dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1

  • groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1

  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True

    torch.nn.Conv2d_torch_04

    torch.nn.Conv2d_2d_05

Examples:

>>> # With square kernels and equal stride
>>> m = nn.Conv2d(16, 33, 3, stride=2)
>>> # non-square kernels and unequal stride and with padding
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
>>> # non-square kernels and unequal stride and with padding and dilation
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))
>>> input = torch.randn(20, 16, 50, 100)
>>> output = m(input)