GoogLeNet

  • ​​模型优势​​
  • ​​不同尺度的特征信息​​
  • ​​采用了1*1卷积​​
  • ​​池化层​​

模型优势

  • 引入了Inception结构(融合不同尺度的特征信息)
  • 使用1x1的卷积核进行降维以及映射处理
  • 添加两个辅助分类器帮助训练
  • 丢弃全连接层,使用平均池化层(大大减少模型参数)
  • 利用平均池化来做输出
    完整模型图:

不同尺度的特征信息

在inception中如何体现特征信息

深度学习从入门到精通——GoogLeNetV1分类算法_人工智能


利用不同的卷积核与池化操作来获得尺度信息,最后合并特征传入下一层网络中。

class Inception(nn.Module):
def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
'''

:param in_channels: 输入的通道数
:param ch1x1: 1x1 卷积核通道数
:param ch3x3red:
:param ch3x3:
:param ch5x5red:
:param ch5x5:
:param pool_proj: 池化输出通道
'''
super(Inception, self).__init__()

self.branch1x1 = BasicConv2d(in_channels=in_channels,out_channels= ch1x1, kernel_size=1)

self.branch3x3 = nn.Sequential(
BasicConv2d(in_channels=in_channels, out_channels=ch3x3red, kernel_size=1),
BasicConv2d(in_channels= ch3x3red, out_channels=ch3x3, kernel_size=3, padding=1) # 保证输出大小等于输入大小
)

self.branch5x5 = nn.Sequential(
BasicConv2d(in_channels=in_channels, out_channels=ch5x5red, kernel_size=1),
BasicConv2d(in_channels=ch5x5red, out_channels=ch5x5, kernel_size=5, padding=2) # 保证输出大小等于输入大小
)

self.pool = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
BasicConv2d(in_channels=in_channels, out_channels=pool_proj, kernel_size=1)
)

def forward(self, x):
branch1 = self.branch1x1(x)
branch2 = self.branch3x3(x)
branch3 = self.branch5x5(x)
branch4 = self.pool(x)

outputs = [branch1, branch2, branch3, branch4]
return torch.cat(outputs, 1)

采用了1*1卷积

  • 11 卷积在像素上,由于尺度大小是11,所以在像素层面计算基本不会变化,但是根据卷积的原理,11卷积之后,会进行通道上的混洗,因此11卷积额外提供了特征升维的功能。
  • 通过控制1*1卷积核的个数,可以合理的控制输出的大小,还提供了升维能力

池化层

利用平均池化化来代替全连接:

  • 可以直接输入不同形状的图片
  • 计算量大大减少
    完整inceptionV1
import torch.nn as nn
import torch
import torch.nn.functional as F


class GoogLeNet(nn.Module):
def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
super(GoogLeNet, self).__init__()

self.aux_logits = aux_logits

# 7*7,stride=2
self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

# 1*1+3*3+maxpool
self.conv2 = BasicConv2d(64, 64, kernel_size=1)
self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

# 枝丫a
self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
# 枝丫a
self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)


self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

# 辅助分类器
if self.aux_logits:
self.aux1 = InceptionAux(512, num_classes)
self.aux2 = InceptionAux(528, num_classes)

# 平均池化
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropout = nn.Dropout(0.4)
self.fc = nn.Linear(1024, num_classes)
if init_weights:
self._initialize_weights()

def forward(self, x):
# N x 3 x 224 x 224
x = self.conv1(x)
# N x 64 x 112 x 112
x = self.maxpool1(x)
# N x 64 x 56 x 56
x = self.conv2(x)
# N x 64 x 56 x 56
x = self.conv3(x)
# N x 192 x 56 x 56
x = self.maxpool2(x)

# N x 192 x 28 x 28
x = self.inception3a(x)
# N x 256 x 28 x 28
x = self.inception3b(x)
# N x 480 x 28 x 28
x = self.maxpool3(x)
# N x 480 x 14 x 14
x = self.inception4a(x)
# N x 512 x 14 x 14
if self.training and self.aux_logits: # eval model lose this layer
aux1 = self.aux1(x)

x = self.inception4b(x)
# N x 512 x 14 x 14
x = self.inception4c(x)
# N x 512 x 14 x 14
x = self.inception4d(x)
# N x 528 x 14 x 14

if self.training and self.aux_logits: # eval model lose this layer
aux2 = self.aux2(x)

x = self.inception4e(x)
# N x 832 x 14 x 14
x = self.maxpool4(x)
# N x 832 x 7 x 7
x = self.inception5a(x)
# N x 832 x 7 x 7
x = self.inception5b(x)
# N x 1024 x 7 x 7

x = self.avgpool(x)
# N x 1024 x 1 x 1
x = torch.flatten(x, 1)
# N x 1024
x = self.dropout(x)
x = self.fc(x)
# N x 1000 (num_classes)
if self.training and self.aux_logits: # eval model lose this layer
return x, aux2, aux1
return x

def _initialize_weights(self):

for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)


class Inception(nn.Module):
def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
'''

:param in_channels: 输入的通道数
:param ch1x1: 1x1 卷积核通道数
:param ch3x3red:
:param ch3x3:
:param ch5x5red:
:param ch5x5:
:param pool_proj: 池化输出通道
'''
super(Inception, self).__init__()

self.branch1x1 = BasicConv2d(in_channels=in_channels,out_channels= ch1x1, kernel_size=1)

self.branch3x3 = nn.Sequential(
BasicConv2d(in_channels=in_channels, out_channels=ch3x3red, kernel_size=1),
BasicConv2d(in_channels= ch3x3red, out_channels=ch3x3, kernel_size=3, padding=1) # 保证输出大小等于输入大小
)

self.branch5x5 = nn.Sequential(
BasicConv2d(in_channels=in_channels, out_channels=ch5x5red, kernel_size=1),
BasicConv2d(in_channels=ch5x5red, out_channels=ch5x5, kernel_size=5, padding=2) # 保证输出大小等于输入大小
)

self.pool = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
BasicConv2d(in_channels=in_channels, out_channels=pool_proj, kernel_size=1)
)

def forward(self, x):
branch1 = self.branch1x1(x)
branch2 = self.branch3x3(x)
branch3 = self.branch5x5(x)
branch4 = self.pool(x)

outputs = [branch1, branch2, branch3, branch4]
return torch.cat(outputs, 1)


class InceptionAux(nn.Module):
def __init__(self, in_channels, num_classes):
super(InceptionAux, self).__init__()
self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
self.conv = BasicConv2d(in_channels, 128, kernel_size=1) # output[batch, 128, 4, 4]

self.fc1 = nn.Linear(2048, 1024)
self.fc2 = nn.Linear(1024, num_classes)

def forward(self, x):
# aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
x = self.averagePool(x)
# aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
x = self.conv(x)
# N x 128 x 4 x 4
x = torch.flatten(x, 1)
x = F.dropout(x, 0.5, training=self.training)
# N x 2048
x = F.relu(self.fc1(x), inplace=True)
x = F.dropout(x, 0.5, training=self.training)
# N x 1024
x = self.fc2(x)
# N x num_classes
return x


class BasicConv2d(nn.Module):

def __init__(self, in_channels, out_channels, **kwargs):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
self.relu = nn.ReLU(inplace=True)

def forward(self, x):

x = self.conv(x)
x = self.relu(x)
return x


if __name__ == '__main__':
model = GoogLeNet()
print(model)