YOLOV1

  • 速度快,能够达到实时的要求。在 Titan X 的 GPU 上 能够达到 45 帧每秒。
  • 使用全图作为 Context 信息,背景错误(把背景错认为物体)比较少。
  • 泛化能力强。
  • YOLO的核心思想就是利用整张图作为网络的输入,直接在输出层回归bounding box的位置和bounding box所属的类别,属于one-Stage 网络。Faster RCNN中也直接用整张图作为输入,但是faster-RCNN整体还是采用了RCNN那种 proposal+classifier的思想,只不过是将提取proposal的步骤放在CNN中实现了。

实现方法

  • 将一幅图像分成SxS个网格(grid cell),如果某个object的中心 落在这个网格中,则这个网格就负责预测这个object。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BCCjMOah-1646385868534)(…/images/yolov1.assets/20160317163739691.png)]

  • 每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。
    这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:
  • 每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。则SxS个网格,每个网格要预测B个bounding box还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。
    注意:class信息是针对每个网格的,confidence信息是针对每个bounding box的。

推理细节

class YOLOv1(nn.Module):
def __init__(self, params):

self.dropout_prop = params["dropout"]
self.num_classes = params["num_class"]

super(YOLOv1, self).__init__()
# LAYER 1
self.layer1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64),
nn.LeakyReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))

# LAYER 2
self.layer2 = nn.Sequential(
nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(192, momentum=0.01),
nn.LeakyReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))

# LAYER 3
self.layer3 = nn.Sequential(
nn.Conv2d(192, 128, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(128, momentum=0.01),
nn.LeakyReLU())
self.layer4 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256, momentum=0.01),
nn.LeakyReLU())
self.layer5 = nn.Sequential(
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=1),
nn.BatchNorm2d(256, momentum=0.01),
nn.LeakyReLU())
self.layer6 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
nn.BatchNorm2d(512, momentum=0.01),
nn.LeakyReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))

# LAYER 4
self.layer7 = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(256, momentum=0.01),
nn.LeakyReLU())
self.layer8 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512, momentum=0.01),
nn.LeakyReLU())
self.layer9 = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(256, momentum=0.01),
nn.LeakyReLU())
self.layer10 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512, momentum=0.01),
nn.LeakyReLU())
self.layer11 = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(256, momentum=0.01),
nn.LeakyReLU())
self.layer12 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512, momentum=0.01),
nn.LeakyReLU())
self.layer13 = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(256, momentum=0.01),
nn.LeakyReLU())
self.layer14 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512, momentum=0.01),
nn.LeakyReLU())
self.layer15 = nn.Sequential(
nn.Conv2d(512, 512, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(512, momentum=0.01),
nn.LeakyReLU())
self.layer16 = nn.Sequential(
nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(1024, momentum=0.01),
nn.LeakyReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))

# LAYER 5
self.layer17 = nn.Sequential(
nn.Conv2d(1024, 512, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(512, momentum=0.01),
nn.LeakyReLU())
self.layer18 = nn.Sequential(
nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(1024, momentum=0.01),
nn.LeakyReLU())
self.layer19 = nn.Sequential(
nn.Conv2d(1024, 512, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(512, momentum=0.01),
nn.LeakyReLU())
self.layer20 = nn.Sequential(
nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(1024, momentum=0.01),
nn.LeakyReLU())
self.layer21 = nn.Sequential(
nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(1024, momentum=0.01),
nn.LeakyReLU())
self.layer22 = nn.Sequential(
nn.Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(1024, momentum=0.01),
nn.LeakyReLU())

# LAYER 6
self.layer23 = nn.Sequential(
nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(1024, momentum=0.01),
nn.LeakyReLU())
self.layer24 = nn.Sequential(
nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(1024, momentum=0.01),
nn.LeakyReLU())

self.fc1 = nn.Sequential(
nn.Linear(7 * 7 * 1024, 4096),
nn.LeakyReLU(),
nn.Dropout(self.dropout_prop)
)

self.fc2 = nn.Sequential(
nn.Linear(4096, 7 * 7 * ((5) + self.num_classes))
)

for m in self.modules():

if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity="leaky_relu")
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)

def forward(self, x):

out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.layer5(out)
out = self.layer6(out)
out = self.layer7(out)
out = self.layer8(out)
out = self.layer9(out)
out = self.layer10(out)
out = self.layer11(out)
out = self.layer12(out)
out = self.layer13(out)
out = self.layer14(out)
out = self.layer15(out)
out = self.layer16(out)
out = self.layer17(out)
out = self.layer18(out)
out = self.layer19(out)
out = self.layer20(out)
out = self.layer21(out)
out = self.layer22(out)
out = self.layer23(out)
out = self.layer24(out)
out = out.reshape(out.size(0), -1)
out = self.fc1(out)
out = self.fc2(out)
out = out.reshape((-1, 7, 7, ((5) + self.num_classes)))
out[:, :, :, 0] = torch.sigmoid(out[:, :, :, 0]) # sigmoid to objness1_output
out[:, :, :, 5:] = torch.sigmoid(out[:, :, :, 5:]) # sigmoid to class_output

return out

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lTVorGbG-1646385868536)(…/images/yolov1.assets/v2-f28410d5069d7026527753d4c5390cf2_hd.jpg)]、、

损失函数设计

  • 针对一个网格,一个框对应的(X,Y,W,H,C),分别代表框的信息,以及对应的置信度信息
  • 针对VOC数据集,额外判断20类别
  • 输出 20(类别信息)+置信度(置信度)+(X,Y,W,H)(位置信息)
  • lambda_coord = 5, lambda_noobj = 0.5 主要解决类别不平衡的问题,让置信度高也就是含有真实目标得损失权重更大。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-o7gGSVcx-1646385868537)(…/images/yolov1.assets/v2-f9af0b8094b35f7c2ab2179efb6f4c8c_hd.jpg)]

def one_hot(output, label, device):

label = label.cpu().data.numpy()
b, s1, s2, c = output.shape
dst = np.zeros([b, s1, s2, c], dtype=np.float32)

for k in range(b):
for i in range(s1):
for j in range(s2):

dst[k][i][j][int(label[k][i][j])] = 1.

result = torch.from_numpy(dst)
if device == 'cpu':
result = result.type(torch.FloatTensor)
else:
result = result.type(torch.FloatTensor).cuda()

return result
# def detection_loss_4_yolo(output, target):
def detection_loss_4_yolo(output, target, device):

# hyper parameter

# 就是让含有物体的格点,在损失函数中的权重更大,让模型更加“重视”含有物体的格点所造成的损失
lambda_coord = 5
lambda_noobj = 0.5

# check batch size
b, _, _, _ = target.shape
_, _, _, n = output.shape

# output tensor slice
# output tensor shape is [batch, 7, 7, 5 + classes]
# 置信度,x,y, w,h, 类别
objness1_output = output[:, :, :, 0]
x_offset1_output = output[:, :, :, 1]
y_offset1_output = output[:, :, :, 2]
width_ratio1_output = output[:, :, :, 3]
height_ratio1_output = output[:, :, :, 4]
class_output = output[:, :, :, 5:]

num_cls = class_output.shape[-1]

# label tensor slice
objness_label = target[:, :, :, 0]
x_offset_label = target[:, :, :, 1]
y_offset_label = target[:, :, :, 2]
width_ratio_label = target[:, :, :, 3]
height_ratio_label = target[:, :, :, 4]



class_label = one_hot(class_output, target[:, :, :, 5], device)
#全部设置为正
noobjness_label = torch.neg(torch.add(objness_label, -1))


obj_coord1_loss = lambda_coord * \
torch.sum(objness_label *
(torch.pow(x_offset1_output - x_offset_label, 2) +
torch.pow(y_offset1_output - y_offset_label, 2)))

obj_size1_loss = lambda_coord * \
torch.sum(objness_label *
(torch.pow(width_ratio1_output - torch.sqrt(width_ratio_label), 2) +
torch.pow(height_ratio1_output - torch.sqrt(height_ratio_label), 2)))

objectness_cls_map = objness_label.unsqueeze(-1)

for i in range(num_cls - 1):
objectness_cls_map = torch.cat((objectness_cls_map, objness_label.unsqueeze(-1)), dim=3)

obj_class_loss = torch.sum(objectness_cls_map * torch.pow(class_output - class_label, 2))

noobjness1_loss = lambda_noobj * torch.sum(noobjness_label * torch.pow(objness1_output - objness_label, 2))

objness1_loss = torch.sum(objness_label * torch.pow(objness1_output - objness_label, 2))

total_loss = (obj_coord1_loss + obj_size1_loss + noobjness1_loss + objness1_loss + obj_class_loss)

total_loss = total_loss / b

return total_loss, obj_coord1_loss / b, obj_size1_loss / b, obj_class_loss / b, noobjness1_loss / b, objness1_loss / b
class YoloV1Loss(nn.Module):
"""yolo-v1 损失函数定义实现"""
def __init__(self, s=7, b=2, l_coord=5, l_noobj=0.5,
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')):
""" 为了更重视8维的坐标预测,给这些算是前面赋予更大的loss weight
对于有物体的记为λcoord,在pascal VOC训练中取5,对于没有object的bbox的confidence loss,
前面赋予更小的loss weight 记为 λnoobj,
在pascal VOC训练中取0.5, 有object的bbox的confidence loss"""
super(YoloV1Loss, self).__init__()
self.s = s # 正方形网格数
self.b = b # 每个格的预测框数
self.l_coord = l_coord # 损失函数坐标回归权重
self.l_noobj = l_noobj # 损失函数类别分类权重
self.device = device

def forward(self, predict_tensor, target_tensor):
"""
:param predict_tensor:
(tensor) size(batch_size, S, S, Bx5+20=30) [x, y, w, h, c]---预测对应的格式
:param target_tensor:
(tensor) size(batch_size, S, S, 30) --- 标签的准确格式
:return:
"""
N = predict_tensor.size()[0]

# 具有目标标签的索引(bs, 7, 7, 30)中7*7方格中的哪个方格包含目标
coo_mask = target_tensor[:, :, :, 4] > 0 # coo_mask.shape = (bs, 7, 7)
# 不具有目标的标签索引
noo_mask = target_tensor[:, :, :, 4] == 0

# 得到含物体的坐标等信息(coo_mask扩充到与target_tensor一样形状, 沿最后一维扩充)
coo_mask = coo_mask.unsqueeze(-1).expand_as(target_tensor)
# 得到不含物体的坐标等信息
noo_mask = noo_mask.unsqueeze(-1).expand_as(target_tensor)

# coo_pred:tensor[, 30](所有batch数据都压缩在一起)
coo_pred = predict_tensor[coo_mask].view(-1, 30)
# box[x1,y1,w1,h1,c1], [x2,y2,w2,h2,c2]
box_pred = coo_pred[:, :10].contiguous().view(-1, 5)
# class[...]
class_pred = coo_pred[:, 10:]

coo_target = target_tensor[coo_mask].view(-1, 30)
box_target = coo_target[:, :10].contiguous().view(-1, 5)
class_target = coo_target[:, 10:]

# compute not contain obj loss
noo_pred = predict_tensor[noo_mask].view(-1, 30)
noo_target = target_tensor[noo_mask].view(-1, 30)
# noo pred只需要计算 Obj1、2 的损失 size[,2]
noo_pred_mask = torch.ByteTensor(noo_pred.size()).to(self.device)
noo_pred_mask.zero_()
noo_pred_mask[:, 4] = 1
noo_pred_mask[:, 9] = 1

# 获取不包含目标框的置信度值
noo_pred_c = noo_pred[noo_pred_mask]
noo_target_c = noo_target[noo_pred_mask]

# 不含object bbox confidence 预测
nooobj_loss = F.mse_loss(noo_pred_c, noo_target_c, reduction='sum')

# compute contain obj loss
coo_response_mask = torch.ByteTensor(box_target.size()).to(self.device)
coo_response_mask.zero_()
coo_not_response_mask = torch.ByteTensor(box_target.size()).to(self.device)
coo_not_response_mask.zero_()
box_target_iou = torch.zeros(box_target.size()).to(self.device)
# 从两个gt bbox框中二选一(同一个格点的两个gt bbox是一样的)
for i in range(0, box_target.size()[0], 2):
# choose the best iou box
box1 = box_pred[i:i + self.b] # 获取当前格点预测的b个box
box1_xyxy = torch.FloatTensor(box1.size())
# (x,y,w,h)
box1_xyxy[:, :2] = box1[:, :2] / self.s - 0.5 * box1[:, 2:4]
box1_xyxy[:, 2:4] = box1[:, :2] / self.s + 0.5 * box1[:, 2:4]
box2 = box_target[i].view(-1, 5)
box2_xyxy = torch.FloatTensor(box2.size())
box2_xyxy[:, :2] = box2[:, :2] / self.s - 0.5 * box2[:, 2:4]
box2_xyxy[:, 2:4] = box2[:, :2] / self.s + 0.5 * box2[:, 2:4]
# iou(pred_box[2,], target_box[2,])
iou = self.compute_iou(box1_xyxy[:, :4], box2_xyxy[:, :4])
# target匹配到的box, 在self.b个预测box中获取与target box iou 值最大的那个的索引
max_iou, max_index = iou.max(0)
_logger.info("max_iou: {}, max_index:{}".format(max_iou, max_index))
max_index = max_index.to(self.device)

coo_response_mask[i + max_index] = 1
coo_not_response_mask[i + 1 - max_index] = 1
'''we want the confidence score to equal the
intersection over union (IOU) between the predicted box
and the ground truth'''
# iou value 作为box包含目标的confidence(赋值在向量的第五个位置)
box_target_iou[i + max_index, torch.LongTensor([4]).to(self.device)] = max_iou.to(self.device)

box_target_iou = box_target_iou.to(self.device)
# 1.response loss
# temp = box_pred[coo_response_mask]
# box_pred[coo_response_mask]将coo_response_mask对应值为1的索引在box_pred的值取出组成一维向量
box_pred_response = box_pred[coo_response_mask].view(-1, 5)
box_target_response_iou = box_target_iou[coo_response_mask].view(-1, 5)
box_target_response = box_target[coo_response_mask].view(-1, 5)

# 包含目标box confidence的损失
contain_loss = F.mse_loss(box_pred_response[:, 4], box_target_response_iou[:, 4], reduction='sum')

# 包含目标box的损失
loc_loss = (F.mse_loss(box_pred_response[:, :2],
box_target_response[:, :2],
reduction='sum') +
F.mse_loss(torch.sqrt(box_pred_response[:, 2:4]),
torch.sqrt(box_target_response[:, 2:4]),
reduction='sum'))

# 2.not response loss
box_pred_not_response = box_pred[coo_not_response_mask].view(-1, 5)
box_target_not_response = box_target[coo_not_response_mask].view(-1, 5)
box_target_not_response[:, 4] = 0
# not_contain_loss = F.mse_loss(box_pred_response[:,4], box_target_response[:,4], size_average=False)

# I believe this bug is simply a typo(包含目标格点上不包含目标的box confidence的损失)
not_contain_loss = F.mse_loss(box_pred_not_response[:, 4], box_target_not_response[:, 4], reduction='sum')

# 3.class loss(分类损失)
class_loss = F.mse_loss(class_pred, class_target, reduction='sum')

return (self.l_coord * loc_loss + 2 * contain_loss +
not_contain_loss + self.l_noobj * nooobj_loss + class_loss) / N

def compute_iou(self, box1, box2):
"""iou的作用是,当一个物体有多个框时,选一个相比ground truth最大的执行度的为物体的预测,然后将剩下的框降序排列,
如果后面的框中有与这个框的iou大于一定的阈值时则将这个框舍去(这样就可以抑制一个物体有多个框的出现了),
目标检测算法中都会用到这种思想。
Compute the intersection over union of two set of boxes, each box is [x1,y1,x2,y2].
Args:
box1: (tensor) bounding boxes, sized [N,4].
box2: (tensor) bounding boxes, sized [M,4].
Return:
(tensor) iou, sized [N,M]."""

N = box1.size(0)
M = box2.size(0)

# torch.max(input, other, out=None) → Tensor
# Each element of the tensor input is compared with the corresponding element
# of the tensor other and an element-wise maximum is taken.
# left top
lt = torch.max(
box1[:, :2].unsqueeze(1).expand(N, M, 2), # [N,2] -> [N,1,2] -> [N,M,2]
box2[:, :2].unsqueeze(0).expand(N, M, 2), # [M,2] -> [1,M,2] -> [N,M,2]
)
# right bottom
rb = torch.min(
box1[:, 2:].unsqueeze(1).expand(N, M, 2), # [N,2] -> [N,1,2] -> [N,M,2]
box2[:, 2:].unsqueeze(0).expand(N, M, 2), # [M,2] -> [1,M,2] -> [N,M,2]
)

wh = rb - lt # [N,M,2]
wh[wh < 0] = 0 # clip at 0
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]

area1 = (box1[:, 2] - box1[:, 0]) * (box1[:, 3] - box1[:, 1]) # [N,]
area2 = (box2[:, 2] - box2[:, 0]) * (box2[:, 3] - box2[:, 1]) # [M,]
area1 = area1.unsqueeze(1).expand_as(inter) # [N,] -> [N,1] -> [N,M]
area2 = area2.unsqueeze(0).expand_as(inter) # [M,] -> [1,M] -> [N,M]

iou = inter / (area1 + area2 - inter)

return iou

缺点

  • YOLO对相互靠的很近的物体,还有很小的群体 检测效果不好,这是因为一个网格中只预测了两个框,并且只属于一类。
  • 对​​测试​​图像中,同一类物体出现的新的不常见的长宽比和其他情况是。泛化能力偏弱。
  • 由于损失函数的问题,定位误差是影响检测效果的主要原因。尤其是大小物体的处理上,还有待加强。