信息质量模型在互联网行业和互联网数据化运营中也是有着广泛基础性应用的。具体来说,电商行业和电商平台连接买卖双方最直接、最关键的纽带就是海量的商品目录、商品Offer、商品展示等,无论是B2C(如当当网、凡客网),还是C2C(如淘宝网),或者是B2B(如阿里巴巴),只要是以商业为目的,以交易为目的的,都需要采用有效手段去提升海量商业信息(商品目录、商品Offer、商品展示等)的质量和结构,从而促进交易。
Python图像处理:图像腐蚀与图像膨胀图像的膨胀(Dilation)和腐蚀(Erosion)是两种基本的形态学运算,主要用来寻找图像中的极大区域和极小区域。其中膨胀类似于“领域扩张”,将图像中的高亮区域或白色部分进行扩张,其运行结果图比原图的高亮区域更大;腐蚀类似于“领域被蚕食”,将图像中的高亮区域或白色部分进行缩减细化,其运行结果图比原图的高亮区域更小。
网上有非常多介绍大规模机器学习的资料,大部分的内容都集中在为何要做大规模机器学习模型以及Parameter Server相关的资料,但我们在实际实践中,发现大规模的特征预处理也有很多问题需要解决。有一次和明风(以前在阿里,后来去了腾讯做了开源的PS:angel)交流过这部分的工作为何没有人开源,结论大致是这部分的工作和业务相关性大,且讲明白了技术亮点不多,属于苦力活,所以没有开源的动力。
将非局部计算作为获取长时记忆的通用模块,提高神经网络性能在深度神经网络中,获取长时记忆(long-range dependency)至关重要。对于序列数据(例如语音、语言),递归运算(recurrent operation)是长时记忆建模的主要解决方案。对于图像数据,长时记忆建模则依靠大型感受野,后者是多层卷积运算堆叠的结果。 卷积和递归运算处理的都是一个局部邻域,可以是空间局部邻域,也
当今技术的发展日新月异,系统架构也跟随技术的发展不断升级和改进,从传统的单一架构演变为如今的微服务分布式架构,我们来看看技术架构的演变过程。
云计算、大数据等信息技术正在深刻改变着人们的思维、生产、生活和学习方式,并延深进入人们的日常生活。
所谓服务器大流量高并发指的是:在同时或极短时间内,有大量的请求到达服务端,每个请求都需要服务端耗费资源进行处理,并做出相应的反馈。
Copyright © 2005-2025 51CTO.COM 版权所有 京ICP证060544号