昨天我们分析了某 girl 的 QQ 空间,之后想想还是不过瘾啊,感觉还可以深度挖掘词云这个库,于是在网上找了一个实际例子又来波
首先需要下载 拉勾网数百个职位招聘详数据,这里小编已经为大家准备好了
https://pan.baidu.com/s/1HG7rcgeLTpcemo-oT_KebA
密码 bvb8
我们需要读取这个文件
读取并打印出前面100个字符
text=''
with open('./lagou-job1000-ai-details.txt','r') as f:
text=f.read()
f.close()
print(text[:100])
jieba 分词
#cell-2
import jieba
words = jieba.lcut(text)
cuted=' '.join(words)
print(cuted[:100])
生成词云对象
首先,默认情况wordcloud是不支持中文显示的,所以要先添加一个中文字体文件,一般是.ttf或.otf
格式,你可以从网上搜索‘字体下载’找到想要的字体。上面代码中使用的是
#cell-3
from wordcloud import WordCloud
fontpath='SourceHanSansCN-Regular.otf'
wc = WordCloud(font_path=fontpath, # 设置字体
background_color="white", # 背景颜色
max_words=1000, # 词云显示的最大词数
max_font_size=500, # 字体最大值
min_font_size=20, #字体最小值
random_state=42, #随机数
collocations=False, #避免重复单词
width=1600,height=1200,margin=10, #图像宽高,字间距,需要配合下面的plt.figure(dpi=xx)放缩才有效
)
wc.generate(cuted)
WordCloud(...)
命令包含了很多参数,其中就包含了我们上面设定的字体路径font_path
。
注意这里width=1600,height=1200,margin=100
图像宽高只是原始图像的大小,至于后面显示出来的时候可能还会被放缩。它的更多参数可以查看下面链接wordcloud官方WordCloud方法说明
显示词云图
我们用matplotlib的imshow就是image-show把图片显示出来
#cell-4
import matplotlib.pyplot as plt
plt.figure(dpi=100) #通过这里可以放大或缩小
plt.imshow(wc, interpolation='catrom',vmax=1000)
plt.axis("off") #隐藏坐标plt.show()
wc.to_file('py_book.png')
去除冗余单词
我们可以利用jieba的del_word功能去掉冗余单词。
修改cell-2代码:
#cell-2
import jieba
removes =['熟悉', '技术', '职位', '相关', '工作', '开发', '使用','能力','优先','描述','任职']
for w in removes:
jieba.del_word(w)
words = jieba.lcut(text)
cuted = ' '.join(words)
print(cuted[:100])
这里用for循环依次删除了各个冗余词,也可不用for循环,改为lcut之后对words进行处理:
words = jieba.lcut(text)
words = [w for w in words if w not in removes]
区分中英文
如果我们只关注英文技术点,比如python,tensorflow等,那就忽略中文内容。
使用正则表达式来匹配提取哪些由az小写字母和AZ大写字母加上0~9数字组成的单词。
修改cell-2如下:
#cell-2
import jieba
words = jieba.lcut(text)
import re
pattern = re.compile(r'^[a-zA-Z0-1]+$')
words = [w for w in words if pattern.match(w)]
cuted = ' '.join(words)
print(cuted[:100])
改变造型
我们让单词按照特定的造型来排列。首先我们需要一张造型图片,下面是一张AI文字造型图片,请把它右键另存为ai-mask.png
文件。
前面在wc = WordCloud(font_path=fontpath...
中有很多参数可以设置,其中就有mask遮罩参数,可以指定一张读取的图片数据,根据官方说明,这个数据应该是nd-array
格式,这是一个多维数组格式(N-dimensional Array)。
我们使用PIL模块中的Image.open('...')可以读取图片,然后利用numpy来转换为nd-arry
格式。
修改cell-3,读取图片并增加mask参数:
#cell-3
from wordcloud import WordCloud
fontpath='SourceHanSansCN-Regular.otf'
import numpy as np
from PIL import Image
aimask=np.array(Image.open("ai-mask.png"))
wc = WordCloud(font_path=fontpath, # 设置字体
background_color="white", # 背景颜色
max_words=1000, # 词云显示的最大词数
max_font_size=100, # 字体最大值
min_font_size=5, #字体最小值
random_state=42, #随机数
collocations=False, #避免重复单词
mask=aimask, #造型遮盖
width=1600,height=1200,margin=2, #图像宽高,字间距,需要配合下面的plt.figure(dpi=xx)放缩才有效
)
wc.generate(cuted)
改进颜色
默认情况图片上文字的颜色都是随机的,我们可以使用图片来控制文字的颜色。
WordCloud
方法提供了一个color_func颜色函数的参数,用一个函数来改变每个词的颜色,在这里我们直接使用上面深色的AI图片颜色来控制。
from wordcloud import WordCloud
from wordcloud import ImageColorGenerator
fontpath='SourceHanSansCN-Regular.otf'
import numpy as np
from PIL import Image
aimask=np.array(Image.open("ai-mask.png"))
genclr=ImageColorGenerator(aimask)
wc = WordCloud(font_path=fontpath, # 设置字体
background_color="white", # 背景颜色
max_words=1000, # 词云显示的最大词数
max_font_size=100, # 字体最大值
min_font_size=5, #字体最小值
random_state=42, #随机数
collocations=False, #避免重复单词
mask=aimask, #造型遮盖
color_func=genclr,
width=1600,height=1200,margin=2, #图像宽高,字间距,需要配合下面的plt.figure(dpi=xx)放缩才有效
)
wc.generate(cuted)
在上面,我们引入了from wordcloud import ImageColorGenerator
方法,它是直接用来生成一个color_func
颜色函数的,它括号里需要一个nd-array多维数组的图像,恰好我们上面的aimask就是这个格式,直接用就可以。
重新运行得到最开始看到的图,
和原图对比,就能看到文字颜色的规律了:
汇总
读取文件
jieba分词
利用re正则表达式选出英文单词
生成词云对象,利用图片遮罩形状和改变颜色
使用Matplotlib来显示图片
完整代码如下:
#cell-1
text=''
with open('./lagou-job1000-ai-details.txt','r') as f:
text=f.read()
f.close()
print(text[:100])
#cell-2
import jieba
words = jieba.lcut(text)
import re
pattern = re.compile(r'^[a-zA-Z0-1]+$')
words = [w for w in words if pattern.match(w)]
cuted = ' '.join(words)
print(cuted[:500])
#cell-3
from wordcloud import WordCloud
from wordcloud import ImageColorGenerator
fontpath='SourceHanSansCN-Regular.otf'
import numpy as np
from PIL import Image
aimask=np.array(Image.open("ai-mask.png"))
genclr=ImageColorGenerator(aimask)
wc = WordCloud(font_path=fontpath, # 设置字体
background_color="white", # 背景颜色
max_words=1000, # 词云显示的最大词数
max_font_size=100, # 字体最大值
min_font_size=5, #字体最小值
random_state=42, #随机数
collocations=False, #避免重复单词
mask=aimask, #造型遮盖
color_func=genclr,
width=1600,height=1200,margin=2, #图像宽高,字间距,需要配合下面的plt.figure(dpi=xx)放缩才有效
)
wc.generate(cuted)
#cell-4
import matplotlib.pyplot as plt
plt.figure(dpi=150) #通过这里可以放大或缩小
plt.imshow(wc, interpolation='catrom',vmax=1000)
plt.axis("off") #隐藏坐标