PS:为了更好的阅读体验,推荐阅读原文,到我的博客中阅读。
那么有了线性结构,我们为什么还需要非线性结构呢? 答案是为了高效地兼顾静态操作和动态操作。大家可以对照各种数据结构的各种操作的复杂度来直观感受一下。
树
树的应用同样非常广泛,小到文件系统,大到因特网,组织架构等都可以表示为树结构,而在我们前端眼中比较熟悉的 DOM 树也是一种树结构,而 HTML 作为一种 DSL 去描述这种树结构的具体表现形式。如果你接触过 AST,那么 AST 也是一种树,XML 也是树结构。。。树的应用远比大多数人想象的要得多。
树其实是一种特殊的图
,是一种无环连通图,是一种极大无环图,也是一种极小连通图。
从另一个角度看,树是一种递归的数据结构。而且树的不同表示方法,比如不常用的长子 + 兄弟
法,对于 你理解树这种数据结构有着很大用处, 说是一种对树的本质的更深刻的理解也不为过。
树的基本算法有前中后序遍历和层次遍历,有的同学对前中后这三个分别具体表现的访问顺序比较模糊,其实当初我也是一样的,后面我学到了一点,你只需要记住:所谓的前中后指的是根节点的位置,其他位置按照先左后右排列即可
。比如前序遍历就是根左右
, 中序就是左根右
,后序就是左右根
, 很简单吧?
我刚才提到了树是一种递归的数据结构,因此树的遍历算法使用递归去完成非常简单,幸运的是树的算法基本上都要依赖于树的遍历。 但是递归在计算机中的性能一直都有问题,因此掌握不那么容易理解的"命令式地迭代"遍历算法在某些情况下是有用的。如果你使用迭代式方式去遍历的话,可以借助上面提到的栈
来进行,可以极大减少代码量。
如果使用栈来简化运算,由于栈是 FILO 的,因此一定要注意左右子树的推入顺序。
树的重要性质:
- 如果树有 n 个顶点,那么其就有 n - 1 条边,这说明了树的顶点数和边数是同阶的。
-
任何一个节点到根节点存在
唯一
路径, 路径的长度为节点所处的深度
实际使用的树有可能会更复杂,比如使用在游戏中的碰撞检测可能会用到四叉树或者八叉树。以及 k 维的树结构 k-d 树
等。
二叉树
二叉树是节点度数不超过二的树,是树的一种特殊子集,有趣的是二叉树这种被限制的树结构却能够表示和实现所有的树, 它背后的原理正是长子 + 兄弟
法,用邓老师的话说就是二叉树是多叉树的特例,但在有根且有序时,其描述能力却足以覆盖后者
。
实际上, 在你使用
长子 + 兄弟
法表示树的同时,进行 45 度角旋转即可。
一个典型的二叉树:
标记为 7 的节点具有两个子节点, 标记为 2 和 6; 一个父节点,标记为 2,作为根节点, 在顶部,没有父节点。
对于一般的树,我们通常会去遍历,这里又会有很多变种。
下面我列举一些二叉树遍历的相关算法:
- 94.binary-tree-inorder-traversal
- 102.binary-tree-level-order-traversal
- 103.binary-tree-zigzag-level-order-traversal
- 144.binary-tree-preorder-traversal
- 145.binary-tree-postorder-traversal
- 199.binary-tree-right-side-view
相关概念:
- 真二叉树 (所有节点的度数只能是偶数,即只能为 0 或者 2)
另外我也专门开设了二叉树的遍历章节, 具体细节和算法可以去那里查看。
堆
堆其实是一种优先级队列,在很多语言都有对应的内置数据结构,很遗憾 javascript 没有这种原生的数据结构。 不过这对我们理解和运用不会有影响。
堆的特点:
- 在一个 最小堆(min heap) 中, 如果 P 是 C 的一个父级节点, 那么 P 的 key(或 value)应小于或等于 C 的对应值. 正因为此,堆顶元素一定是最小的,我们会利用这个特点求最小值或者第 k 小的值。
- 在一个 最大堆(max heap) 中, P 的 key(或 value)大于 C 的对应值。
需要注意的是优先队列不仅有堆一种,还有更复杂的,但是通常来说,我们会把两者做等价。
相关算法:
- 295.find-median-from-data-stream
二叉查找树
二叉排序树(Binary Sort Tree),又称二叉查找树(Binary Search Tree),亦称二叉搜索树。
二叉查找树具有下列性质的二叉树:
- 若左子树不空,则左子树上所有节点的值均小于它的根节点的值;
- 若右子树不空,则右子树上所有节点的值均大于它的根节点的值;
- 左、右子树也分别为二叉排序树;
- 没有键值相等的节点。
对于一个二叉查找树,常规操作有插入,查找,删除,找父节点,求最大值,求最小值。
二叉查找树,之所以叫查找树就是因为其非常适合查找,举个例子, 如下一颗二叉查找树,我们想找节点值小于且最接近 58 的节点,搜索的流程如图所示:
(图片来自 https://www.geeksforgeeks.org/floor-in-binary-search-tree-bst/)
另外我们二叉查找树有一个性质是: 其中序遍历的结果是一个有序数组
。 有时候我们可以利用到这个性质。
相关题目:
- 98.validate-binary-search-tree
二叉平衡树
平衡树是计算机科学中的一类数据结构,为改进的二叉查找树。一般的二叉查找树的查询复杂度取决于目标结点到树根的距离(即深度),因此当结点的深度普遍较大时,查询的均摊复杂度会上升。为了实现更高效的查询,产生了平衡树。
在这里,平衡指所有叶子的深度趋于平衡,更广义的是指在树上所有可能查找的均摊复杂度偏低。
一些数据库引擎内部就是用的这种数据结构,其目标也是将查询的操作降低到 logn(树的深度),可以简单理解为树在数据结构层面构造了二分查找算法
。
基本操作:
-
旋转
-
插入
-
删除
-
查询前驱
-
查询后继
AVL
是最早被发明的自平衡二叉查找树。在 AVL 树中,任一节点对应的两棵子树的最大高度差为 1,因此它也被称为高度平衡树。查找、插入和删除在平均和最坏情况下的时间复杂度都是 {\displaystyle O(\log {n})} O(\log{n})。增加和删除元素的操作则可能需要借由一次或多次树旋转,以实现树的重新平衡。AVL 树得名于它的发明者 G. M. Adelson-Velsky 和 Evgenii Landis,他们在 1962 年的论文 An algorithm for the organization of information 中公开了这一数据结构。 节点的平衡因子是它的左子树的高度减去它的右子树的高度(有时相反)。带有平衡因子 1、0 或 -1 的节点被认为是平衡的。带有平衡因子 -2 或 2 的节点被认为是不平衡的,并需要重新平衡这个树。平衡因子可以直接存储在每个节点中,或从可能存储在节点中的子树高度计算出来。
红黑树
在 1972 年由鲁道夫·贝尔发明,被称为"对称二叉 B 树",它现代的名字源于 Leo J. Guibas 和 Robert Sedgewick 于 1978 年写的一篇论文。红黑树的结构复杂,但它的操作有着良好的最坏情况运行时间,并且在实践中高效:它可以在 {\displaystyle O(\log {n})} O(\log{n})时间内完成查找,插入和删除,这里的 n 是树中元素的数目
字典树(前缀树)
又称 Trie 树,是一种树形结构。典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较,查询效率比哈希树高。
它有 3 个基本性质:
- 根节点不包含字符,除根节点外每一个节点都只包含一个字符;
- 从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串;
- 每个节点的所有子节点包含的字符都不相同。
immutable 与 字典树
immutableJS
的底层就是share + tree
. 这样看的话,其实和字典树是一致的。
相关算法:
- 208.implement-trie-prefix-tree
图
前面讲的数据结构都可以看成是图的特例。 前面提到了二叉树完全可以实现其他树结构, 其实有向图也完全可以实现无向图和混合图,因此有向图的研究一直是重点考察对象。
图论〔Graph Theory〕是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。
图的表示方法
- 邻接矩阵(常见)
空间复杂度 O(n^2),n 为顶点个数。
优点:
-
直观,简单。
-
适用于稠密图
-
判断两个顶点是否连接,获取入度和出度以及更新度数,时间复杂度都是 O(1)
- 关联矩阵
- 邻接表
对于每个点,存储着一个链表,用来指向所有与该点直接相连的点 对于有权图来说,链表中元素值对应着权重
例如在无向无权图中:
可以看出在无向图中,邻接矩阵关于对角线对称,而邻接链表总有两条对称的边 而在有向无权图中:
图的遍历
图的遍历就是要找出图中所有的点,一般有以下两种方法:
- 深度优先遍历:(Depth First Search, DFS)
深度优先遍历图的方法是,从图中某顶点 v 出发, 不断访问邻居, 邻居的邻居直到访问完毕。
- 广度优先搜索:(Breadth First Search, BFS)
广度优先搜索,可以被形象地描述为 "浅尝辄止",它也需要一个队列以保持遍历过的顶点顺序,以便按出队的顺序再去访问这些顶点的邻接顶点。
-------------------------------------------------完---------------------------------------------------