hive on tez详细配置和运行测试

tezhadoophivehdfsyarn


环境: hadoop-2.5.2 hive-0.14 tez-0.5.3 hive on tez 的方式有两种安装配置方式:

  1. 在hadoop中配置
  2. 在hive中配置

比较: 第二种方式:当已经有了稳定的hadoop集群,而不想动这个集群时,可以考虑采用第二种方式配置,第二种方式配置后只有hive的程序可以动态的切换执行引擎:set hive.execution.engine=mr;// tez/mr ;而其他的mapreduce程序只能在yarn上运行; 第一种方式:侵入行较强,对原有的hadoop集群有影响,需要在hadoop的mapred-site.xml中配置:mapreduce.framework.name为yarn-tez,如果这样配置则意味着所有的通过本hadoop集群执行的mr任务都只能走tez方式提交任务,配置好后,hive默认的也就运行在tez上而不用其他的配置; 以因此,在刚开始,想找到第二种的配置方式走了很多弯路

在开始前需要自己编译tez源码 此处略过

 

root@localhost:/opt/work# wget http://www.eu.apache.org/dist/tez/0.5.3/apache-tez-0.5.3-src.tar.gzroot@localhost:/opt/work# tar zxvf apache-tez-0.5.3-src.tar.gzroot@localhost:/opt/work# cd apache-tez-0.5.3-srcroot@localhost:/opt/work/apache-tez-0.5.3-src# mvn clean package -DskipTests=true -Dmaven.javadoc.skip=true //编译过程漫长啊,等待…..,中途有错误可以终止后再次执行mvn命令多次编译,编译成功之后目录结构如下root@localhost:/opt/work/apache-tez-0.5.3-src# ll总用量204drwxrwxr-x 1550050040965月2616:29./drwxr-xr-x 38 root root 40965月2616:34../-rw-rw-r--1500500575312月506:25 BUILDING.txt-rw-rw-r--15005006019912月506:25 CHANGES.txtdrwxrwxr-x 450050040965月2616:30 docs/-rw-rw-r--15005006612月506:25.gitignorelrwxrwxrwx 15005003312月506:25 INSTALL.md -> docs/src/site/markdown/install.md-rw-rw-r--15005001447012月506:25 KEYS-rw-rw-r--15005001135812月506:25 LICENSE.txt-rw-rw-r--150050016412月506:25 NOTICE.txt-rw-rw-r--15005003420312月506:25 pom.xml-rw-rw-r--1500500143312月506:25 README.mddrwxr-xr-x 3 root root 40965月2616:29 target/drwxrwxr-x 450050040965月2616:29 tez-api/drwxrwxr-x 450050040965月2616:29 tez-common/drwxrwxr-x 450050040965月2616:29 tez-dag/drwxrwxr-x 450050040965月2616:30 tez-dist/drwxrwxr-x 450050040965月2616:29 tez-examples/drwxrwxr-x 450050040965月2616:29 tez-mapreduce/drwxrwxr-x 550050040965月2616:29 tez-plugins/drwxrwxr-x 450050040965月2616:29 tez-runtime-internals/drwxrwxr-x 450050040965月2616:29 tez-runtime-library/drwxrwxr-x 450050040965月2616:29 tez-tests/drwxrwxr-x 3500500409612月506:25 tez-tools/root@localhost:/opt/work/apache-tez-0.5.3-src# ll tez-dist/target/总用量40444drwxr-xr-x 5 root root 40965月2616:30./drwxrwxr-x 450050040965月2616:30../drwxr-xr-x 2 root root 40965月2616:30 archive-tmp/drwxr-xr-x 2 root root 40965月2616:30 maven-archiver/drwxr-xr-x 3 root root 40965月2616:30 tez-0.5.3/-rw-r--r--1 root root 106259955月2616:30 tez-0.5.3-minimal.tar.gz-rw-r--r--1 root root 307571285月2616:30 tez-0.5.3.tar.gz-rw-r--r--1 root root 27915月2616:30 tez-dist-0.5.3-tests.jarroot@localhost:/opt/work/apache-tez-0.5.3-src#

编译后的tez-dist/target/tez-0.5.3.tar.gz 就是我们需要的tez组件的二进制包,并将tez-0.5.3.tar.gz上传到hdfs的一个目录中:

 

[hadoop@mymaster local]$ hadoop fs -mkdir /apps[hadoop@mymaster local]$ hadoop fs -copyFromLocal tez-0.5.3.tar.gz /apps/[hadoop@mymaster local]$ hadoop fs -ls /appsSLF4J:Class path contains multiple SLF4J bindings.SLF4J:Found binding in[jar:file:/oneapm/local/hadoop-2.5.2/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]SLF4J:Found binding in[jar:file:/oneapm/local/tez-0.5.3/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]SLF4J:See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.SLF4J:Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]Found1 items-rw-r--r--2 hadoop supergroup 307571282015-05-2616:53/apps/tez-0.5.3.tar.gz[hadoop@mymaster local]$

之后需要在hadoop的master节点上的$HADOOP_HOME/etc/hadoop/目录下创建tez-site.xml文件,内容如下:

 

<?xml version="1.0" encoding="UTF-8"?><?xml-stylesheet type="text/xsl" href="configuration.xsl"?><configuration><property><name>tez.lib.uris</name><value>${fs.defaultFS}/apps/tez-0.5.3.tar.gz</value></property></configuration>

之上所作的都是必须的步骤,接下来分别描述hive on tez 的两种配置方式

 

第一种方式:在hadoop中配置

需要将tez的jar包加到$HADOOP_CLASSPATH路径下,在hadoop_env.sh文件的末尾,添加如下内容:

 

export TEZ_HOME=/oneapm/local/tez-0.5.3#是你的tez的解压目录for jar in`ls $TEZ_HOME |grep jar`;do export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$TEZ_HOME/$jardonefor jar in`ls $TEZ_HOME/lib`;do export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$TEZ_HOME/lib/$jardone

修改mapred-site.xml 文件

 

<property><name>mapreduce.framework.name</name><value>yarn-tez</value></property>

修改之后将mapred-site.xml和hadoop_env.sh,tez-site.xml文件同步到集群所有的节点上,这里将会影响到整个集群,是我不想这么做的原因. 运行tez的实例mr程序,验证是否安装成功:

 

[hadoop@mymaster tez-0.5.3]$ hadoop jar $TEZ_HOME/tez-examples-0.5.3.jar orderedwordcount /license.txt /out当然license.txt 请自行准备上传到hdfs即可,如果运行顺利,查看8088端口如下: 

hive on t hiveontez的任务执行流程_tez

箭头所示的application type为TEZ,表示安装成功

 

第二种方式:在hive中配置

第二种配置开始前,请将第一步的步骤取消,保证hadoop的配置文件恢复到原状,tez-site.xml文件只放在master一台节点上即可;

将tez下的jar和tez下的lib下的jar包复制到hive的$HIVE_HOME/lib目录下即可 配置过程中,我的hive和hadoop的master在同一个节点上,以hadoop用户启动运行hive,tez/mr一切顺利,但是考虑到与master放在一个节点运行 master节点物理资源不足,所以将hive同样的配置迁移到另一台干净的主机hiveclient上:运行hive on mr任务顺利;运行hive ont tez就不行,错误如下:

 

hive (default)>set hive.execution.engine=tez;hive (default)>select json_udtf(data)from tpm.tps_dc_metricdata where pt=2015060200 limit 1;Query ID = blueadmin_20150603130202_621abba7-850e-4683-8331-aee8482f2ebeTotal jobs =1LaunchingJob1out of 1FAILED:ExecutionError,return code 1from org.apache.hadoop.hive.ql.exec.tez.TezTaskhive (default)>

FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.tez.TezTask 引起这个错误的原因很多,只从这里看不出来到底是哪里有问题, 只能看hive的运行job日志了,日志在你的HIVEHOME/conf的hive−log4j.properties下的hive.log.dir={java.io.tmpdir}/user.name所指的目录下,如果日志使用的是默认的配置,则在主机的/tmp/{user}/目录下生成hive的job日志和运行日志,在log中看到如下的信息:

 

2015-06-0313:03:01,071 INFO [main]: tez.DagUtils(DagUtils.java:createLocalResource(718))-Resource modification time:14333077810752015-06-0313:03:01,126 ERROR [main]:exec.Task(TezTask.java:execute(184))-Failed to execute tez graph.java.io.FileNotFoundException:File does not exist: hdfs:/user/hivetest at org.apache.hadoop.hdfs.DistributedFileSystem$17.doCall(DistributedFileSystem.java:1072) at org.apache.hadoop.hdfs.DistributedFileSystem$17.doCall(DistributedFileSystem.java:1064) at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81) at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:1064) at org.apache.hadoop.hive.ql.exec.tez.DagUtils.getDefaultDestDir(DagUtils.java:774) at org.apache.hadoop.hive.ql.exec.tez.DagUtils.getHiveJarDirectory(DagUtils.java:870) at org.apache.hadoop.hive.ql.exec.tez.TezSessionState.createJarLocalResource(TezSessionState.java:337) at org.apache.hadoop.hive.ql.exec.tez.TezSessionState.open(TezSessionState.java:158) at org.apache.hadoop.hive.ql.exec.tez.TezTask.updateSession(TezTask.java:234) at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:410) at org.apache.hadoop.hive.cli.CliDriver.executeDriver(CliDriver.java:783) at org.apache.hadoop.hive.cli.CliDriver.run(CliDriver.java:677) at org.apache.hadoop.hive.cli.CliDriver.main(CliDriver.java:616) at sun.reflect.NativeMethodAccessorImpl.invoke0(NativeMethod) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.hadoop.util.RunJar.main(RunJar.java:212)2015-06-0313:03:01,127 ERROR [main]: ql.Driver(SessionState.java:printError(833))- FAILED:ExecutionError,return code 1from org.apache.hadoop.hive.ql.exec.tez.TezTask

说hdfs没有/user/hivetest 目录,确实,我的hiveclient主机上运行的hive是以hivetest用户运行的,它在hdfs上没有自己的home目录,那么没有目录,就创建目录:

 

[hivetest@mymaster tez-0.5.3]$hadoop fs -mkdir /user/hivetest

如此依赖问题解决,重新进入hive即可,接下来为hive on tez/yarn的初步测试结果

 

启动hive运行测试

 

hive (default)>set hive.execution.engine=tez;hive (default)>select t.a,count(1)from(select split(data,'\t')[1] a,split(data,'\t')[2] b from tpm.tps_dc_metricdata limit 1000) t groupby t.a ;Query ID = hadoop_20150526184141_556cf5d8-edf3-430a-b21a-513c35679567Total jobs =1LaunchingJob1out of 1Tez session was closed.Reopening...Session re-established.Status:Running(Executing on YARN cluster withApp id application_1432632452478_0005)-------------------------------------------------------------------------------- VERTICES STATUS TOTAL COMPLETED RUNNING PENDING FAILED KILLED--------------------------------------------------------------------------------Map1.......... SUCCEEDED 26260000Reducer2...... SUCCEEDED 110000Reducer3...... SUCCEEDED 110000--------------------------------------------------------------------------------VERTICES:03/03[==========================>>]100% ELAPSED TIME:24.60 s --------------------------------------------------------------------------------OKt.a _c11171071003101610511172118211911123120312111234124412516126412791291014262211此处省略n条打印记录Time taken:30.637 seconds,Fetched:207 row(s)

set hive.execution.engine=tez; 即执行引擎为tez 如果想用yarn,则设置为:set hive.execution.engine=mr;即可 tez执行过程中有个已经很漂亮的进度条,如上所示; 执行查询1000条记录

hive on yarn

 

hive (tpm)>set hive.execution.engine=mr;hive (tpm)>select t.a,count(1)from(select split(data,'\t')[1] a,split(data,'\t')[2] b from tpm.tps_dc_metricdata limit 1000) t groupby t.a ;Query ID = hadoop_20150526140606_d73156e0-c81c-4b2a-bfb6-fd1d48fa8325Total jobs =2LaunchingJob1out of 2Number of reduce tasks determined at compile time:1In order to change the average load for a reducer (in bytes):set hive.exec.reducers.bytes.per.reducer=<number>In order to limit the maximum number of reducers:set hive.exec.reducers.max=<number>In order to set a constant number of reducers:set mapreduce.job.reduces=<number>StartingJob= job_1432521221608_0008,Tracking URL = http://mymaster:8088/proxy/application_1432521221608_0008/KillCommand=/oneapm/local/hadoop-2.5.2/bin/hadoop job -kill job_1432521221608_0008Hadoop job information forStage-1: number of mappers:70; number of reducers:12015-05-2614:06:53,584Stage-1 map =0%, reduce =0%2015-05-2614:07:13,931Stage-1 map =1%, reduce =0%,Cumulative CPU 3.46 sec2015-05-2614:07:15,004Stage-1 map =9%, reduce =0%,Cumulative CPU 21.37 sec2015-05-2614:07:18,198Stage-1 map =12%, reduce =0%,Cumulative CPU 43.02 sec2015-05-2614:07:19,260Stage-1 map =19%, reduce =0%,Cumulative CPU 47.7 sec2015-05-2614:07:20,322Stage-1 map =20%, reduce =0%,Cumulative CPU 48.52 sec省略打印OKt.a _c1115108100110131022104510511063107101092省略打印Time taken:152.971 seconds,Fetched:207 row(s)

本次测试结果:on tez比on yarn上快大约5倍左右的速度;

对多个hive stage的sql优化显著,测试结果根据不同的平台可能有不同程度的差异

总结: 1.根据如上第二种的配置,集群默认的还是yarn,hive可以在mr和tez之间自由切换而对原有的hadoop mr任务没有影响,还是yarn,运行的状态可以下8088端口下看,hive的命令行终端运行tez是的进度条挺漂亮;

 

参考

官网:此处输入链接的描述 不错的博客:此处输入链接的描述

+