一、开发说明

        承接上一篇使用spark-shell操作Hudi,实际开发中肯定不能只在shell下来操作,Hudi其实提供了Hudi表的概念,而且支持CRUD操作,所以可以使用Spark来操作Hudi API进行读写

sparkSql 动态分区 参数设置 sparksql hudi_spark

 二、环境准备

1、创建Maven工程(随意)

2、添加Hudi及Spark相关依赖jar包

<properties>
    <scala.version>2.12.10</scala.version>
    <scala.binary.version>2.12</scala.binary.version>
    <spark.version>3.0.0</spark.version>
    <hadoop.version>2.7.3</hadoop.version>
    <hudi.version>0.9.0</hudi.version>
</properties>
<dependencies>
    <!-- 依赖Scala语言 -->
    <dependency>
        <groupId>org.scala-lang</groupId>
        <artifactId>scala-library</artifactId>
        <version>${scala.version}</version>
    </dependency>
    <!-- Spark Core 依赖 -->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_${scala.binary.version}</artifactId>
        <version>${spark.version}</version>
    </dependency>
    <!-- Spark SQL 依赖 -->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-sql_${scala.binary.version}</artifactId>
        <version>${spark.version}</version>
    </dependency>

    <!-- Hadoop Client 依赖 -->
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-client</artifactId>
        <version>${hadoop.version}</version>
    </dependency>

    <dependency>
        <groupId>org.codehaus.janino</groupId>
        <artifactId>janino</artifactId>
        <version>3.0.8</version>
    </dependency>

    <!-- hudi-spark3 -->
    <dependency>
        <groupId>org.apache.hudi</groupId>
        <artifactId>hudi-spark3-bundle_2.12</artifactId>
        <version>${hudi.version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-avro_2.12</artifactId>
        <version>${spark.version}</version>
    </dependency>
</dependencies>
<build>
    <outputDirectory>target/classes</outputDirectory>
    <testOutputDirectory>target/test-classes</testOutputDirectory>
    <resources>
        <resource>
            <directory>${project.basedir}/src/main/resources</directory>
        </resource>
    </resources>
    <!-- Maven 编译的插件 -->
    <plugins>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-compiler-plugin</artifactId>
            <version>3.0</version>
            <configuration>
                <source>1.8</source>
                <target>1.8</target>
                <encoding>UTF-8</encoding>
            </configuration>
        </plugin>
        <plugin>
            <groupId>net.alchim31.maven</groupId>
            <artifactId>scala-maven-plugin</artifactId>
            <version>3.2.0</version>
            <executions>
                <execution>
                    <goals>
                        <goal>compile</goal>
                        <goal>testCompile</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

3、将hadoop的core-site.xml和hdfs-site.xml拷贝到resources

三、代码实现

1、测试案列

        1)、测试说明

        基于Spark DataSource数据源,模拟产生Trip乘车交易数据,保存到Hudi表(COW类型: Copy on Write),再从Hudi表加载数据分析查询

        2)、案列

sparkSql 动态分区 参数设置 sparksql hudi_apache_02

2、案列一:插入数据到hudi表

        使用官方QuickstartUtils提供模拟产生Trip数据,模拟100条交易Trip乘车数据,将其转换为DataFrame数据集,保存至Hudi表中,代码基本与spark-shell命令行一致

        1)、代码

package com.ouyangl.hudi.spark.start

import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SaveMode, SparkSession}
/**
  * @author oyl
  * @create 2022-05-29 14:15
  * @Description 官方案例:模拟产生数据,插入Hudi表,表的类型COW
  */
object insertDatasToHudi {

  def main(args: Array[String]): Unit = {
    
    // 创建sparkSQL的运行环境
    val conf = new SparkConf().setAppName("insertDatasToHudi").setMaster("local[2]")
    val spark = SparkSession.builder().config(conf)
      // 设置序列化方式:Kryo
      .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
      .getOrCreate()

    //定义变量:表名,数据存储路径
    val tableName : String = "tb1_trips_cow"
    val tablePath : String = "/datas/hudi-warehouse/tb1_trips_cow"

    //引入相关包
    import spark.implicits._
    import scala.collection.JavaConversions._

    // 第1步、模拟乘车数据
    import org.apache.hudi.QuickstartUtils._
    val generator: DataGenerator = new DataGenerator()
    val insertDatas = convertToStringList(generator.generateInserts(100))

    val insertDF: DataFrame = spark.read.json(spark.sparkContext.parallelize(insertDatas, 2).toDS())

    //    insertDF.printSchema()
    //    insertDF.show(2)

    //第2步、将数据插入到hudi表
    import org.apache.hudi.DataSourceWriteOptions._
    import org.apache.hudi.config.HoodieWriteConfig._

    insertDF.write
      .format("hudi")
      .mode(SaveMode.Overwrite)
      .option("hoodie.insert.shuffle.parallelism", "2")
      .option("hoodie.upsert.shuffle.parallelism", "2")
      // Hudi 表的属性值设置
      .option(PRECOMBINE_FIELD.key(), "ts")
      .option(RECORDKEY_FIELD.key(), "uuid")
      .option(PARTITIONPATH_FIELD.key(), "partitionpath")
      .option(TBL_NAME.key(), tableName)
      .save(tablePath)
    
    //关闭
    spark.stop()
  }
}

         2)、执行结果

        可以看到数据就写入到tb1_trips_cow表里面去了

sparkSql 动态分区 参数设置 sparksql hudi_spark_03

 2、案列二:查询数据Query

        1)、Snapshot快照方式直接查询

package com.ouyangl.hudi.spark.start

import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SparkSession}

/**
  * @author oyl
  * @create 2022-05-29 14:19
  * @Description 快照方式查询(Snapshot Query)数据,采用DSL方式
  */
object queryDataFromHudi {

  def main(args: Array[String]): Unit = {
    // 创建sparkSQL的运行环境
    val conf = new SparkConf().setAppName("queryDataFromHudi").setMaster("local[2]")
    val spark = SparkSession.builder().config(conf)
      // 设置序列化方式:Kryo
      .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
      .getOrCreate()

    //定义变量:表名,数据存储路径
    val tableName : String = "tb1_trips_cow"
    val tablePath : String = "/datas/hudi-warehouse/tb1_trips_cow"

    import spark.implicits._

    val df: DataFrame = spark.read.format("hudi").load(tablePath)

    val value = df.filter($"fare" >= 20 && $"fare" <= 50)
      .select($"driver", $"rider", $"fare", $"begin_lat", $"begin_lon", $"partitionpath", $"_hoodie_commit_time")
      .orderBy($"fare".desc, $"_hoodie_commit_time".desc)
    
    value.show(20,false)
    
    spark.stop()
  }
}

sparkSql 动态分区 参数设置 sparksql hudi_sparkSql 动态分区 参数设置_04

        2)、时间点查询

        可以依据时间进行过滤查询,设置属性:"as.of.instant"

package com.ouyangl.hudi.spark.start

import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SparkSession}

/**
  * @author oyl
  * @create 2022-05-29 17:59
  * @Description 通过时间点来查询数据,时间点就是提交的commit时间
  */
object queryDataByTime {

  def main(args: Array[String]): Unit = {
    // 创建sparkSQL的运行环境
    val conf = new SparkConf().setAppName("updateDataToHudi").setMaster("local[2]")
    val spark = SparkSession.builder().config(conf)
      // 设置序列化方式:Kryo
      .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
      .getOrCreate()

    //定义变量:表名,数据存储路径
    val tableName : String = "tb1_trips_cow"
    val tablePath : String = "/datas/hudi-warehouse/tb1_trips_cow"

    import spark.implicits._

    //方式一:指定字符串,格式yyyyMMddHHmmss
    val df1: DataFrame = spark.read.format("hudi")
      .option("as.of.instant","20220529120442")
      .load(tablePath)
        .sort($"_hoodie_commit_time".desc)
    df1.show(20,false)

    //方式二:指定字符串,格式yyyy-MM-dd HH:mm:ss
    val df2: DataFrame = spark.read.format("hudi")
      .option("as.of.instant","2022-05-29 12:04:42")
      .load(tablePath)
      .sort($"_hoodie_commit_time".desc)
    df2.show(20,false)

    spark.stop()
  }
}

sparkSql 动态分区 参数设置 sparksql hudi_spark_05

3、案例三:更新数据Update

        由于官方提供工具类DataGenerator模拟生成更新update数据时,必须要与模拟生成插入insert数据使用同一个DataGenerator对象,

        1)、代码编写

package com.ouyangl.hudi.spark.start

import org.apache.hudi.QuickstartUtils.DataGenerator
import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SaveMode, SparkSession}

/**
  * @author oyl
  * @create 2022-05-29 18:19
  * @Description updateData,先生成更新数据,再保存至Hudi表
  */
object updateDataToHudi {

  def main(args: Array[String]): Unit = {
    // 创建sparkSQL的运行环境
    val conf = new SparkConf().setAppName("updateDataToHudi").setMaster("local[2]")
    val spark = SparkSession.builder().config(conf)
      // 设置序列化方式:Kryo
      .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
      .getOrCreate()

    //定义变量:表名,数据存储路径
    val tableName : String = "tb1_trips_cow"
    val tablePath : String = "/datas/hudi-warehouse/tb1_trips_cow"

    import spark.implicits._
    import org.apache.hudi.QuickstartUtils._
    val dataGen: DataGenerator = new DataGenerator()

    import org.apache.hudi.QuickstartUtils._
    import scala.collection.JavaConverters._
    import org.apache.hudi.DataSourceWriteOptions._
    import org.apache.hudi.config.HoodieWriteConfig._

    // 第1步、模拟乘车数据,插入数据到Hudi表
    val inserts = convertToStringList(dataGen.generateInserts(150))
    val insertDF: DataFrame = spark.read.json(
      spark.sparkContext.parallelize(inserts.asScala, 2).toDS()
    )
//    insertDF.write
//      .mode(SaveMode.Overwrite)
//      .format("hudi")
//      .option("hoodie.insert.shuffle.parallelism", "2")
//      .option("hoodie.upsert.shuffle.parallelism", "2")
//      // Hudi 表的属性值设置
//      .option(PRECOMBINE_FIELD.key(), "ts")
//      .option(RECORDKEY_FIELD.key(), "uuid")
//      .option(PARTITIONPATH_FIELD.key(), "partitionpath")
//      .option(TBL_NAME.key(), tableName)
//      .save(tablePath)

    val updates = convertToStringList(dataGen.generateUpdates(150))

    val updateDF: DataFrame = spark.read.json(
      spark.sparkContext.parallelize(updates.asScala, 2).toDS()
    )
    updateDF.write
      .mode(SaveMode.Append)
      .format("hudi")
      .option("hoodie.insert.shuffle.parallelism", "2")
      .option("hoodie.upsert.shuffle.parallelism", "2")
      // Hudi 表的属性值设置
      .option(PRECOMBINE_FIELD.key(), "ts")
      .option(RECORDKEY_FIELD.key(), "uuid")
      .option(PARTITIONPATH_FIELD.key(), "partitionpath")
      .option(TBL_NAME.key(), tableName)
      .save(tablePath)

    spark.stop()
  }
}

         2)、执行结果

sparkSql 动态分区 参数设置 sparksql hudi_数据_06

sparkSql 动态分区 参数设置 sparksql hudi_spark_07

4、案例四:增量查询Incremental query

        1)、增量查询方式

        当Hudi中表的类型为:COW时,支持2种方式查询:Snapshot Queries、Incremental Queries;默认情况下查询属于:Snapshot Queries快照查询,通过参数:hoodie.datasource.query.type 可以进行设置

sparkSql 动态分区 参数设置 sparksql hudi_数据_08

         2)、如果是incremental增量查询,需要指定时间戳,当Hudi表中数据满足:instant_time > beginTime时,数据将会被加载读取。此外,可设置某个时间范围:endTime > instant_time > begionTime,获取相应的数据

sparkSql 动态分区 参数设置 sparksql hudi_spark_09

         3)、代码编写

        首先从Hudi表加载所有数据,获取其中字段值:_hoodie_commit_time,从中选取一个值,作为增量查询:beginTime开始时间;再次设置属性参数,从Hudi表增量查询数据

package com.ouyangl.hudi.spark.start

import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession

/**
  * @author oyl
  * @create 2022-05-29 21:17
  * @Description incremental增量查询
  */
object incrementalQueryData {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[*]").setAppName("incrementalQueryData")

    val spark = SparkSession.builder().config(conf)
      // 设置序列化方式:Kryo
      .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
      .getOrCreate()

    //定义变量:表名,数据存储路径
    val tableName : String = "tb1_trips_cow"
    val tablePath : String = "/datas/hudi-warehouse/tb1_trips_cow"

    import spark.implicits._

    // 第1步、加载Hudi表数据,获取commit time时间,作为增量查询数据阈值
    import org.apache.hudi.DataSourceReadOptions._
    spark.read
      .format("hudi")
      .load(tablePath)
      .createOrReplaceTempView("view_temp_hudi_trips")
    val commits: Array[String] = spark
      .sql(
        """
        |select
        |  distinct(_hoodie_commit_time) as commitTime
        |from
        |  view_temp_hudi_trips
        |order by
        |  commitTime DESC
        |""".stripMargin
      )
      .map(row => row.getString(0))
      .take(50)
    val beginTime = commits(commits.length - 1) // commit time we are interested in
    println(s"beginTime = ${beginTime}")

    // 第2步、设置Hudi数据CommitTime时间阈值,进行增量数据查询
    val tripsIncrementalDF = spark.read
      .format("hudi")
      // 设置查询数据模式为:incremental,增量读取
      .option(QUERY_TYPE.key(), QUERY_TYPE_INCREMENTAL_OPT_VAL)
      // 设置增量读取数据时开始时间
      .option(BEGIN_INSTANTTIME.key(), beginTime)
      .load(tablePath)

    // 第3步、将增量查询数据注册为临时视图,查询费用大于20数据
    tripsIncrementalDF.createOrReplaceTempView("hudi_trips_incremental")
    spark
      .sql(
        """
        |select
        |  `_hoodie_commit_time`, fare, begin_lon, begin_lat, ts
        |from
        |  hudi_trips_incremental
        |where
        |  fare > 20.0
        |""".stripMargin
      )
      .show(10, truncate = false)

    spark.stop()
  }
}

        4)、增量查询数据结果

sparkSql 动态分区 参数设置 sparksql hudi_apache_10

 5、案例五:删除数据Delete

hoodie.datasource.write.operation 值为:delete

sparkSql 动态分区 参数设置 sparksql hudi_spark_11

        1)、代码编写

        先从Hudi表获取50条数据,然后构建出数据格式,最后保存到Hudi表

package com.ouyangl.hudi.spark.start

import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SaveMode, SparkSession}

/**
  * @author oyl
  * @create 2022-05-29 21:25
  * @Description 删除Hudi数据
  */
object deleteDataFromHudi {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[*]").setAppName("deleteDataFromHudi")

    val spark: SparkSession = SparkSession.builder().config(conf)
      // 设置序列化方式:Kryo
      .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
      .getOrCreate()

    //定义变量:表名,数据存储路径
    val tableName : String = "tb1_trips_cow"
    val tablePath : String = "/datas/hudi-warehouse/tb1_trips_cow"

    import spark.implicits._

    // 第1步、加载Hudi表数据,获取条目数
    val tripsDF: DataFrame = spark.read.format("hudi").load(tablePath)
    println(s"Raw Count = ${tripsDF.count()}")

    // 第2步、模拟要删除的数据,从Hudi中加载数据,获取几条数据,转换为要删除数据集合
    val dataframe = tripsDF.limit(50).select($"uuid", $"partitionpath")
    import org.apache.hudi.QuickstartUtils._

    val dataGenerator = new DataGenerator()
    val deletes = dataGenerator.generateDeletes(dataframe.collectAsList())

    import scala.collection.JavaConverters._
    val deleteDF = spark.read.json(spark.sparkContext.parallelize(deletes.asScala, 2))

    // 第3步、保存数据到Hudi表中,设置操作类型:DELETE
    import org.apache.hudi.DataSourceWriteOptions._
    import org.apache.hudi.config.HoodieWriteConfig._
    deleteDF.write
      .mode(SaveMode.Append)
      .format("hudi")
      .option("hoodie.insert.shuffle.parallelism", "2")
      .option("hoodie.upsert.shuffle.parallelism", "2")
      // 设置数据操作类型为delete,默认值为upsert
      .option(OPERATION.key(), "delete")
      .option(PRECOMBINE_FIELD.key(), "ts")
      .option(RECORDKEY_FIELD.key(), "uuid")
      .option(PARTITIONPATH_FIELD.key(), "partitionpath")
      .option(TBL_NAME.key(), tableName)
      .save(tablePath)

    // 第4步、再次加载Hudi表数据,统计条目数,查看是否减少50条数据
    val hudiDF: DataFrame = spark.read.format("hudi").load(tablePath)
    println(s"Delete After Count = ${hudiDF.count()}")

    spark.stop()
  }
}

         2)、执行结果,50条数据被删除了

sparkSql 动态分区 参数设置 sparksql hudi_大数据_12