C/C++实现区块链(中)之算法实现(原创代码,转载必究)

###1、矩阵类实现

class Martix {
public:
	static const int circle_s = 1;							//假定向量环路为1;
	static const int KEY =Martix::circle_s * 8;
private:
	unsigned long long martix_4_2[Martix::KEY / 2][2];				//存储向量矩阵
	unsigned long long martix_8_8[Martix::KEY][Martix::KEY];		//存储由向量矩阵得到的转置矩阵
	unsigned long long martix_complete[KEY * 2];				//存储操作完成后的矩阵(一维)

public:
	Martix(string a) {};
	Martix(int a, int b,int circle)
	{
		int key = 8;
		int cir = circle;
		while (cir--)
		{
			martix_4_2[key / 2 - 4][0] = (-1)*b;	martix_4_2[key / 2 - 4][1] = (-1)*a;
			martix_4_2[key / 2 - 3][0] = b;			martix_4_2[key / 2 - 3][1] = (-1)*a;
			martix_4_2[key / 2 - 2][0] = b;			martix_4_2[key / 2 - 2][1] = a;
			martix_4_2[key / 2 - 1][0] = (-1)*b;	martix_4_2[key / 2 - 1][1] = a;
			key += 8;
		}
	}

	void Change_New_Martix() {
		for (int i = 0; i < 2; i++)
		{
			for (int j = 0; j < 2; j++)
			{
				martix_8_8[i][j] = 0;
			}
		}

		for (int j = 2; j < KEY / 2 + 2; j++) {
			martix_8_8[0][j] = martix_4_2[j - 2][0] * (-1);
			martix_8_8[1][j] = martix_4_2[j - 2][1] * (-1);
		}

		for (int i = 2; i < KEY / 2 + 2; i++) {
			martix_8_8[i][0] = martix_4_2[i - 2][0] * (-1);
			martix_8_8[i][1] = martix_4_2[i - 2][1] * (-1);
		}

		for (int i = 2; i < KEY / 2 + 2; i++)
		{
			for (int j = 2; j < KEY / 2 + 2; j++)
			{
				martix_8_8[i][j] = 0;
			}
		}
	}

public:
	void Save_Martix()
	{
		int key = 0;
		for (int i = 0; i < KEY / 2 + 2; i++)
		{
			for (int j = 0; j < KEY / 2 + 2; j++)
			{
				if (martix_8_8[i][j] != 0)
				{
					martix_complete[key++] = martix_8_8[i][j];
				}
			}
		}
	}

	unsigned long long GetPublicKey()
	{
		unsigned long long public_key = martix_complete[0];
		for (int i = 1; i < KEY * 2; i++)
		{
			if (i % 2 == 0)
			{
				public_key = public_key + martix_complete[i];
			}
			else {
				public_key = public_key * martix_complete[i];
			}
		}
		return public_key;
	}
};

###2、加密算法实现

class Cryptography :Martix
{
public:
	/*作为私钥,发送方保存内容*/
	unsigned long long a;					//椭圆长轴的半轴长度
	unsigned long long b;					//椭圆短轴的半轴长度

									/*作为公钥,接收方接受公钥*/
	unsigned long long public_Key;			//通过椭圆矩阵算法得到的公钥G
	Moving_Point p;					//随机选定的在椭圆上的点

public:
	Cryptography(string a) :Martix("OK") {};
	Cryptography(unsigned long long in_a, unsigned long long in_b,int diffcult) :Martix(in_a, in_b,diffcult)
	{
		this->a = in_a;
		this->b = in_b;
		p.x = 0;
		p.y = 0;
		public_Key = Getpublickey();
	}

	unsigned long long Getpublickey()
	{
		Get_Public_Key();
		return public_Key;
	}

	Moving_Point GetPoint()
	{
		Get_Point();
		return p;
	}
public:
	void PrintPrivateKey() {
		cout << "#############私钥:#############" << endl;
		cout << "长轴:" << 2*this->a << "\t\t";
		cout << "短轴:" << 2*this->b << endl;
	}
private:
	void Get_Point()
	{
		if (p.x == 0 && p.y == 0)
		{
			while (!Is_Moving_Point())
			{
				Get_Moving_Point_P();
			}
		}
	}

	void Get_Public_Key()
	{
		this->Change_New_Martix();
		this->Save_Martix();
		this->public_Key = this->GetPublicKey();
	}

	void Get_Moving_Point_P()	//得到一个随机的在椭圆上的点的坐标
	{
		for (int i = 0; i < this->a; i++)
		{
			for (int j = 0; j < this->b; j++)
			{
				p.x = i;
				p.y = j;
			}
		}
	}

	bool Is_Moving_Point() {
		if (pow(b, 2)*pow(p.y, 2) + pow(a, 2)*pow(p.x, 2) == pow(a, 2)*pow(b, 2) && p.y <= a && p.x <= b)
			return true;
		else
			return false;
	}
};

###不过我觉得以上代码中的POINT(代表动点M)可能目前来看没有什么太大的意义,但是在后面身份认证的时候可能会用到,所以先留着。

区块结构定义

struct block {
	unsigned long long this_hash;
	unsigned long long pre_hash;
	unsigned long long data;
};