深度学习入门(六) 图像分类数据集(Fashion-MNIST)

  • 前言
  • 图像分类数据集(Fashion-MNIST)
  • 1 获取数据集
  • 2 读取小批量
  • 3 整合所有组件


前言


本文记录用,防止遗忘

图像分类数据集(Fashion-MNIST)

在介绍softmax回归的实现前我们先引入一个多类图像分类数据集。它将在后面的章节中被多次使用,以方便我们观察比较算法之间在模型精度和计算效率上的区别。图像分类数据集中最常用的是手写数字识别数据集MNIST[1]。但大部分模型在MNIST上的分类精度都超过了95%。为了更直观地观察算法之间的差异,我们将使用一个图像内容更加复杂的数据集Fashion-MNIST[2](这个数据集也比较小,只有几十M,没有GPU的电脑也能吃得消)。

import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l

d2l.use_svg_display()

torchvision.datasets: 一些加载数据的函数及常用的数据集接口;

torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet、VGG、ResNet等;

torchvision.transforms: 常用的图片变换,例如裁剪、旋转等;

torchvision.utils: 其他的一些有用的方法。;

1 获取数据集

我们可以通过框架中的内置函数将Fashion-MNIST数据集下载并读取到内存中。

下面,我们通过torchvisiontorchvision.datasets来下载这个数据集。第一次调用时会自动从网上获取数据。我们通过参数train来指定获取训练数据集或测试数据集(testing data set)。测试数据集也叫测试集(testing set),只用来评价模型的表现,并不用来训练模型。

另外我们还指定了参数transform = transforms.ToTensor()使所有数据转换为Tensor,如果不进行转换则返回的是PIL图片。transforms.ToTensor()将尺寸为 (H x W x C) 且数据位于[0, 255]的PIL图片或者数据类型为np.uint8的NumPy数组转换为尺寸为(C x H x W)且数据类型为torch.float32且位于[0.0, 1.0]的Tensor

注意: 由于像素值为0到255的整数,所以刚好是uint8所能表示的范围,包括transforms.ToTensor()在内的一些关于图片的函数就默认输入的是uint8型,若不是,可能不会报错但可能得不到想要的结果。所以,**如果用像素值(0-255整数)表示图片数据,那么一律将其类型设置成uint8,避免不必要的bug。

# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,并除以255使得所有像素的数值均在0到1之间
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
    root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
    root="../data", train=False, transform=trans, download=True)

或者

mnist_train = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=True, download=True, transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=False, download=True, transform=transforms.ToTensor())

上面的mnist_trainmnist_test都是torch.utils.data.Dataset的子类,所以我们可以用len()来获取该数据集的大小,还可以用下标来获取具体的一个样本。训练集中和测试集中的每个类别的图像数分别为6,000和1,000。因为有10个类别,所以训练集和测试集的样本数分别为60,000和10,000。

Fashion-MNIST由10个类别的图像组成, 每个类别由训练数据集(train dataset)中的6000张图像 和测试数据集(test dataset)中的1000张图像组成。 因此,训练集和测试集分别包含60000和10000张图像。 测试数据集不会用于训练,只用于评估模型性能。

print(type(mnist_train))
print(len(mnist_train), len(mnist_test))

输出:

<class 'torchvision.datasets.mnist.FashionMNIST'>
60000 10000
len(mnist_train), len(mnist_test)

输出:(60000, 10000)

每个输入图像的高度和宽度均为28像素。 数据集由灰度图像组成,其通道数为1。 为了简洁起见,本书将高度h像素、宽度w像素图像的形状记为h×w或(h,w)。

我们可以通过下标来访问任意一个样本:

feature, label = mnist_train[0]
print(feature.shape, label)  # Channel x Height x Width

输出:torch.Size([1, 28, 28]) tensor(9)

变量feature对应高和宽均为28像素的图像。由于我们使用了transforms.ToTensor(),所以每个像素的数值为[0.0, 1.0]的32位浮点数。需要注意的是,feature的尺寸是 (C x H x W) 的,而不是 (H x W x C)。第一维是通道数,因为数据集中是灰度图像,所以通道数为1。后面两维分别是图像的高和宽。

mnist_train[0][0].shape

输出:torch.Size([1, 28, 28])

Fashion-MNIST中包含的10个类别,分别为t-shirt(T恤)、trouser(裤子)、pullover(套衫)、dress(连衣裙)、coat(外套)、sandal(凉鞋)、shirt(衬衫)、sneaker(运动鞋)、bag(包)和ankle boot(短靴)。 以下函数用于在数字标签索引及其文本名称之间进行转换。

def get_fashion_mnist_labels(labels):  #@save
    """返回Fashion-MNIST数据集的文本标签"""
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]
# 我们现在可以创建一个函数来可视化这些样本。
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):  #@save
    """绘制图像列表"""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            # 图片张量
            ax.imshow(img.numpy())
        else:
            # PIL图片
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes

另一个可视化函数

# 本函数已保存在d2lzh包中方便以后使用
def show_fashion_mnist(images, labels):
    d2l.use_svg_display()
    # 这里的_表示我们忽略(不使用)的变量
    _, figs = plt.subplots(1, len(images), figsize=(12, 12))
    for f, img, lbl in zip(figs, images, labels):
        f.imshow(img.view((28, 28)).numpy())
        f.set_title(lbl)
        f.axes.get_xaxis().set_visible(False)
        f.axes.get_yaxis().set_visible(False)
    plt.show()

以下是训练数据集中前几个样本的图像及其相应的标签。

X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y));

输出:

深度学习 数据集比较少 深度图数据集_深度学习 数据集比较少


或者

X, y = [], []
for i in range(10):
    X.append(mnist_train[i][0])
    y.append(mnist_train[i][1])
show_fashion_mnist(X, get_fashion_mnist_labels(y))

2 读取小批量

为了使我们在读取训练集和测试集时更容易,我们使用内置的数据迭代器,而不是从零开始创建。 回顾一下,在每次迭代中,数据加载器每次都会读取一小批量数据,大小为batch_size。 通过内置数据迭代器,我们可以随机打乱了所有样本,从而无偏见地读取小批量。

我们将在训练数据集上训练模型,并将训练好的模型在测试数据集上评价模型的表现。前面说过,mnist_traintorch.utils.data.Dataset的子类,所以我们可以将其传入torch.utils.data.DataLoader来创建一个读取小批量数据样本的DataLoader实例。

在实践中,数据读取经常是训练的性能瓶颈,特别当模型较简单或者计算硬件性能较高时。PyTorch的DataLoader中一个很方便的功能是允许使用多进程来加速数据读取。这里我们通过参数num_workers来设置4个进程读取数据。

batch_size = 256

def get_dataloader_workers():  #@save
    """使用4个进程来读取数据"""
    return 4

train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,
                             num_workers=get_dataloader_workers())
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=get_dataloader_workers())

我们看一下读取训练数据所需的时间。

timer = d2l.Timer()
for X, y in train_iter:
    continue
f'{timer.stop():.2f} sec'

3 整合所有组件

现在我们定义load_data_fashion_mnist函数,用于获取和读取Fashion-MNIST数据集。 这个函数返回训练集和验证集的数据迭代器。 此外,这个函数还接受一个可选参数resize,用来将图像大小调整为另一种形状。

def load_data_fashion_mnist(batch_size, resize=None):  #@save
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=get_dataloader_workers()))

下面,我们通过指定resize参数来测试load_data_fashion_mnist函数的图像大小调整功能。

train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
for X, y in train_iter:
    print(X.shape, X.dtype, y.shape, y.dtype)
    break

输出:

torch.Size([32, 1, 64, 64]) torch.float32 torch.Size([32]) torch.int64