本文是用python学习机器学习系列的第五篇
随机森林算法是在决策树算法的基础上的改进,本文使用的基础决策树算法是引用第二篇文章中实现的决策数算法。
链接:python-机器学习-决策树算法 代码如下:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn import preprocessing
import re
from collections import defaultdict
from sklearn.model_selection import train_test_split
import DecisionTree as de
# 随机森林
class RandomForest:
# 初始化
def __init__(self, criterion='gini', max_depth=10, max_tree=20, random_sample=0.5):
self.max_depth = max_depth # 最大树深
self.criterion = criterion # 生成模式 ID3 或 ID4.5 或 gini
self.max_tree = max_tree # 最大生成树数
self.random_sample = random_sample # 随机样本比例
self.forest = [] # 森林
# 拟合函数
def fit(self, x, y):
data = np.hstack((x, y))
for i in range(self.max_tree):
ranData = self.randomSample(data)
x2 = ranData[:, :-1]
y2 = ranData[:, -1]
model = de.DecisionTree(
criterion=self.criterion, max_depth=self.max_depth)
model.fit(x2, y2.reshape(len(y2), 1))
self.forest.append(model)
return self
# 预测多个样本
def predict(self, x):
return np.array([self.hat(i) for i in x])
# 预测单个样本
def hat(self, x):
result = 0
account = 0
ls = np.array([i.hat(x,i.tree) for i in self.forest])
d = self.calculate_N(ls)
for key, value in d.items():
if value > account:
account = value
result = key
return result
# 随机样本选择器
def randomSample(self, data):
l = len(data)
indexs = np.random.choice(l, int(l*self.random_sample))
return np.array([data[i, :] for i in indexs])
# 计算列表并分类
def calculate_N(self, x):
s = set(x.reshape(1, len(x)).tolist()[0])
d = {}
for i in s:
d[i] = list(x).count(i)
return d
iris_feature = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度'
if __name__ == "__main__":
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
path = u'8.iris.data' # 数据文件路径
df = pd.read_csv(path, header=0)
x = df.values[:, :-1]
y = df.values[:, -1]
print('x = \n', x)
print('y = \n', y)
le = preprocessing.LabelEncoder()
le.fit(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'])
y = le.transform(y)
# 为了可视化,仅使用前两列特征
x = x[:, :2]
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.25, random_state=1)
# 决策树参数估计
model = RandomForest(criterion='gini', max_depth=5)
model = model.fit(x_train, y_train.reshape(len(y_train), 1))
y_test_hat = model.predict(x_test) # 测试数据
# 保存
# dot -Tpng -o 1.png 1.dot
#f = open('.\\iris_tree.dot', 'w')
#tree.export_graphviz(model.get_params('DTC')['DTC'], out_file=f)
# 画图
N, M = 100, 100 # 横纵各采样多少个值
x1_min, x1_max = x[:, 0].min(), x[:, 0].max() # 第0列的范围
x2_min, x2_max = x[:, 1].min(), x[:, 1].max() # 第1列的范围
t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, M)
x1, x2 = np.meshgrid(t1, t2) # 生成网格采样点
x_show = np.stack((x1.flat, x2.flat), axis=1) # 测试点
# # 无意义,只是为了凑另外两个维度
# # 打开该注释前,确保注释掉x = x[:, :2]
# x3 = np.ones(x1.size) * np.average(x[:, 2])
# x4 = np.ones(x1.size) * np.average(x[:, 3])
# x_test = np.stack((x1.flat, x2.flat, x3, x4), axis=1) # 测试点
cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
y_show_hat = model.predict(x_show) # 预测值
print("xshow=" + str(x_show))
print("yshow=" + str(y_show_hat))
y_show_hat = y_show_hat.reshape(x1.shape) # 使之与输入的形状相同
plt.figure(facecolor='w')
plt.pcolormesh(x1, x2, y_show_hat, cmap=cm_light) # 预测值的显示
plt.scatter(x_test[:, 0], x_test[:, 1], c=y_test.ravel(),
edgecolors='k', s=100, cmap=cm_dark, marker='o') # 测试数据
plt.scatter(x[:, 0], x[:, 1], c=y.ravel(),
edgecolors='k', s=40, cmap=cm_dark) # 全部数据
plt.xlabel(iris_feature[0], fontsize=15)
plt.ylabel(iris_feature[1], fontsize=15)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.grid(True)
plt.title(u'鸢尾花数据的随机森林分类', fontsize=17)
plt.show()
# 训练集上的预测结果
y_test = y_test.reshape(-1)
print(str(y_test_hat))
print(str(y_test))
result = (y_test_hat == y_test) # True则预测正确,False则预测错误
acc = np.mean(result)
print('准确度: %.2f%%' % (100 * acc))
# 过拟合:错误率
depth = np.arange(1, 15)
err_list = []
for d in depth:
clf = RandomForest(criterion='gini', max_depth=d)
clf = clf.fit(x_train, y_train.reshape(len(y_train), 1))
y_test_hat = clf.predict(x_test) # 测试数据
result = (y_test_hat == y_test) # True则预测正确,False则预测错误
err = 1 - np.mean(result)
err_list.append(err)
print(d, ' 错误率: %.2f%%' % (100 * err))
plt.figure(facecolor='w')
plt.plot(depth, err_list, 'ro-', lw=2)
plt.xlabel(u'决策树深度', fontsize=15)
plt.ylabel(u'错误率', fontsize=15)
plt.title(u'随机森林深度与过拟合', fontsize=17)
plt.grid(True)
plt.show()
运行结果: