推荐几本Python数据分析方面的书。

1、Python金融大数据分析

关于python数据分析方面比较好的书_python


Python凭借其简单、易读、可扩展性以及拥有巨大而活跃的科学计算社区,在需要分析、处理大量数据的金融行业得到了广泛而迅速的应用,并且成为该行业开发核心应用的编程语言。《Python金融大数据分析》提供了使用Python进行数据分析,以及开发相关应用程序的技巧和工具。

《Python金融大数据分析》总计分为3部分,共19章,第1部分介绍了Python在金融学中的应用,其内容涵盖了Python用于金融行业的原因、Python的基础架构和工具,以及Python在计量金融学中的一些具体入门实例;第2部分介绍了金融分析和应用程序开发中重要的Python库、技术和方法,其内容涵盖了Python的数据类型和结构、用matplotlib进行数据可视化、金融时间序列数据处理、高性能输入/输出操作、高性能的Python技术和库、金融学中需要的多种数学工具、随机数生成和随机过程模拟、Python统计学应用、Python和Excel的集成、Python面向对象编程和GUI的开发、Python与Web技术的集成,以及基于Web应用和Web服务的开发;第3部分关注的是蒙特卡洛模拟期权与衍生品定价实际应用的开发工作,其内容涵盖了估值框架的介绍、金融模型的模拟、衍生品的估值、投资组合的估值、波动率期权等知识。

《Python金融大数据分析》适合对使用Python进行大数据分析、处理感兴趣的金融行业开发人员阅读。

2、Python统计分析

关于python数据分析方面比较好的书_数据_02


本书主要介绍了Python在统计数据分析中的应用,内容涵盖连续、离散和分类数据的常见统计检验,以及线性回归分析、生存分析和贝叶斯统计等主题。 本书的特色:针对每种检验方法,提供了Python解决方案的代码和数据,以及便于实际操作的Python示例。借此,读者可以重现这些问题并加强他们对这些统计分析方法的理解。本书所用数据主要来自生命科学和医学科学,因此对这些领域的学生可能更有针对性。不过,本书也介绍了Python的基础知识以及一些统计学的基础知识,任何想要进行统计数据分析的人都可以阅读本书。

3、跟着迪哥学Python数据分析与机器学习实战


关于python数据分析方面比较好的书_数据分析_03

本书结合了机器学习、数据分析和Python语言,通过案例以通俗易懂的方式讲解了如何将算法应用到实际任务。 全书共20章,大致分为4个部分。第一部分介绍了Python的工具包,包括科学计算库Numpy、数据分析库Pandas、可视化库Matplotlib;第2部分讲解了机器学习中的经典算法,例如回归算法、决策树、集成算法、支持向量机、聚类算法等;第3部分介绍了深度学习中的常用算法,包括神经网络、卷积神经网络、递归神经网络;第4部分是项目实战,基于真实数据集,将算法模型应用到实际业务中。 本书适合对人工智能、机器学习、数据分析等方向感兴趣的初学者和爱好者。

4、Python数据分析 第2版


关于python数据分析方面比较好的书_python_04


本书就是一本介绍如何用Python进行数据分析的学习指南。全书共12章,从Python程序库入门、NumPy数组和Pandas入门开始,陆续介绍了数据的检索、数据加工与存储、数据可视化等内容。同时,本书还介绍了信号处理与时间序列、应用数据库、分析文本数据与社交媒体、预测性分析与机器学习、Python生态系统的外部环境和云计算、性能优化及分析、并发性等内容。在本书的最后,还采用3个附录的形式为读者补充了一些重要概念、常用函数以及在线资源等重要内容。

本书延续了上一版示例丰富、简单易懂的优点,非常适合对Python语言感兴趣或者想要使用Python语言进行数据分析的读者参考阅读。