李沐联合编写的,面向中文读者的能运行、可讨论的深度学习教科书《动手学深度学习》又更新了。
文末付本书3月最新版免费下载地址。
- 【关注第二版更新】 英文版前八章已翻译至中文版第二版,并含多种深度学习框架的实现。英文版还新增了注意力机制、BERT、 自然语言推理、 推荐系统和深度学习的数学等。如果想及时获取最新修订或增添的信息, 请关注本书的中文开源项目和英文开源项目。
- 【购买第一版纸质书(上架4周重印2次,累计3万+册)】 纸质书在内容上与在线版大致相同,但力求在样式、术语标注、语言表述、用词规范、标点以及图、表、章节的索引上符合出版标准和学术规范。可以在 京东、 当当、 天猫 购买全彩精装版;或者在 京东、 当当、 天猫 购买黑白平装版。[新书榜] [关于样书]
- 【免费资源(新增中文版课件)】 在校学生和老师可以申请用于本书学习或教学的免费计算资源。课件、作业、教学视频等资源可参考伯克利“深度学习导论” 课程大纲 中的链接(中文版课件)。基于本书较早草稿内容的中文教学视频在:B站 和Youtube。[关于资源]
本书非常畅销,属于深度学习必读书目,喜欢阅读纸质版本的朋友。
内容简介
本书⾯向希望了解深度学习,特别是对实际使⽤深度学习感兴趣的⼤学⽣、⼯程师和研究⼈员。本书并不要求你有任何深度学习或者机器学习的背景知识,我们将从头开始解释每⼀个概念。虽然深度学习技术与应⽤的阐述涉及了数学和编程,但你只需了解基础的数学和编程,例如基础的线性代数、微分和概率,以及基础的 Python 编程。
本书内容⼤体可以分为三部分:
• 第⼀部分(第 1 章⾄第 3 章)涵盖预备⼯作和基础知识。第 1 章介绍了深度学习的背景和本书的使⽤⽅法。第 2 章提供了动⼿学深度学习所需要的预备知识,例如如何获取并运⾏书中的代码。第 3 章包括了深度学习最基础的概念和技术,例如多层感知机和模型正则化。如果你时间有限,并且只希望了解深度学习最基础的概念和技术,那么你只需阅读第⼀部分。
• 第⼆部分(第 4 章⾄第 6 章)关注现代深度学习技术。第 4 章描述了深度学习计算的各个重要组成部分,并为之后实现更复杂的模型打下基础。第 5 章解释了近年来令深度学习在计算机视觉领域⼤获成功的卷积神经⽹络。第 6 章阐述了近年来常⽤于处理序列数据的循环神经⽹络。阅读第⼆部分有助于掌握现代深度学习技术。
• 第三部分(第 7 章⾄第 10 章)讨论计算性能和应⽤。第 7 章评价了各种⽤来训练深度学习模型的优化算法。第 8 章检验了影响深度学习计算性能的⼏个重要因素。第 9 章和第 10 章分别列举了深度学习在计算机视觉和⾃然语⾔处理中的重要应⽤。这部分内容可供你根据兴趣选择阅读。
最新版目录
本书最新版pdf中、英文下载地址
微信公众号“深度学习与NLP”回复关键字“ludl21”获取下载地址。
扫描下方二维码可以订阅哦!
DeepLearning_NLP
深度学习与NLP