一、关于聚类及相似度、距离的知识点
二、k-means算法思想与流程
三、sklearn中对于kmeans算法的参数
四、代码示例以及应用的知识点简介
(1)make_blobs:聚类数据生成器
sklearn.datasets.make_blobs(n_samples=100, n_features=2,centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None)[source]
返回值为:
(2)np.vstack方法作用——堆叠数组
详细介绍参照博客链接:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author:ZhengzhengLiu
#k-means聚类算法
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.colors
import sklearn.datasets as ds
from sklearn.cluster import KMeans #引入kmeans
#解决中文显示问题
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
#产生模拟数据
N = 1500
centers = 4
#make_blobs:聚类数据生成器
data,y = ds.make_blobs(N,n_features=2,centers=centers,random_state=28)
data2,y2 = ds.make_blobs(N,n_features=2,centers=centers,random_state=28)
data3 = np.vstack((data[y==0][:200],data[y==1][:100],data[y==2][:10],data[y==3][:50]))
y3 = np.array([0]*200+[1]*100+[2]*10+[3]*50)
#模型的构建
km = KMeans(n_clusters=centers,random_state=28)
km.fit(data,y)
y_hat = km.predict(data)
print("所有样本距离聚簇中心点的总距离和:",km.inertia_)
print("距离聚簇中心点的平均距离:",(km.inertia_/N))
print("聚簇中心点:",km.cluster_centers_)
y_hat2 = km.fit_predict(data2)
y_hat3 = km.fit_predict(data3)
def expandBorder(a, b):
d = (b - a) * 0.1
return a-d, b+d
#画图
cm = mpl.colors.ListedColormap(list("rgbmyc"))
plt.figure(figsize=(15,9),facecolor="w")
plt.subplot(241)
plt.scatter(data[:,0],data[:,1],c=y,s=30,cmap=cm,edgecolors="none")
x1_min,x2_min = np.min(data,axis=0)
x1_max,x2_max = np.max(data,axis=0)
x1_min,x1_max = expandBorder(x1_min,x1_max)
x2_min,x2_max = expandBorder(x2_min,x2_max)
plt.xlim((x1_min,x1_max))
plt.ylim((x2_min,x2_max))
plt.title("原始数据")
plt.grid(True)
plt.subplot(242)
plt.scatter(data[:, 0], data[:, 1], c=y_hat, s=30, cmap=cm, edgecolors='none')
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'K-Means算法聚类结果')
plt.grid(True)
m = np.array(((1, 1), (0.5, 5)))
data_r = data.dot(m)
y_r_hat = km.fit_predict(data_r)
plt.subplot(243)
plt.scatter(data_r[:, 0], data_r[:, 1], c=y, s=30, cmap=cm, edgecolors='none')
x1_min, x2_min = np.min(data_r, axis=0)
x1_max, x2_max = np.max(data_r, axis=0)
x1_min, x1_max = expandBorder(x1_min, x1_max)
x2_min, x2_max = expandBorder(x2_min, x2_max)
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'数据旋转后原始数据图')
plt.grid(True)
plt.subplot(244)
plt.scatter(data_r[:, 0], data_r[:, 1], c=y_r_hat, s=30, cmap=cm, edgecolors='none')
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'数据旋转后预测图')
plt.grid(True)
plt.subplot(245)
plt.scatter(data2[:, 0], data2[:, 1], c=y2, s=30, cmap=cm, edgecolors='none')
x1_min, x2_min = np.min(data2, axis=0)
x1_max, x2_max = np.max(data2, axis=0)
x1_min, x1_max = expandBorder(x1_min, x1_max)
x2_min, x2_max = expandBorder(x2_min, x2_max)
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'不同方差的原始数据')
plt.grid(True)
plt.subplot(246)
plt.scatter(data2[:, 0], data2[:, 1], c=y_hat2, s=30, cmap=cm, edgecolors='none')
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'不同方差簇数据的K-Means算法聚类结果')
plt.grid(True)
plt.subplot(247)
plt.scatter(data3[:, 0], data3[:, 1], c=y3, s=30, cmap=cm, edgecolors='none')
x1_min, x2_min = np.min(data3, axis=0)
x1_max, x2_max = np.max(data3, axis=0)
x1_min, x1_max = expandBorder(x1_min, x1_max)
x2_min, x2_max = expandBorder(x2_min, x2_max)
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'不同簇样本数量原始数据图')
plt.grid(True)
plt.subplot(248)
plt.scatter(data3[:, 0], data3[:, 1], c=y_hat3, s=30, cmap=cm, edgecolors='none')
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'不同簇样本数量的K-Means算法聚类结果')
plt.grid(True)
plt.tight_layout(2, rect=(0, 0, 1, 0.97))
plt.suptitle(u'数据分布对KMeans聚类的影响', fontsize=18)
plt.savefig("k-means聚类算法.png")
plt.show()
#运行结果:
所有样本距离聚簇中心点的总距离和: 2592.9990199
距离聚簇中心点的平均距离: 1.72866601327
聚簇中心点: [[ -7.44342199e+00 -2.00152176e+00]
[ 5.80338598e+00 2.75272962e-03]
[ -6.36176159e+00 6.94997331e+00]
[ 4.34372837e+00 1.33977807e+00]]
代码中用到的知识点:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author:ZhengzhengLiu
#kmean与mini batch kmeans 算法的比较
import time
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.colors
from sklearn.cluster import KMeans,MiniBatchKMeans
from sklearn.datasets.samples_generator import make_blobs
from sklearn.metrics.pairwise import pairwise_distances_argmin
#解决中文显示问题
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
#初始化三个中心
centers = [[1,1],[-1,-1],[1,-1]]
clusters = len(centers) #聚类数目为3
#产生3000组二维数据样本,三个中心点,标准差是0.7
X,Y = make_blobs(n_samples=300,centers=centers,cluster_std=0.7,random_state=28)
#构建kmeans算法
k_means = KMeans(init="k-means++",n_clusters=clusters,random_state=28)
t0 = time.time()
k_means.fit(X) #模型训练
km_batch = time.time()-t0 #使用kmeans训练数据消耗的时间
print("K-Means算法模型训练消耗时间:%.4fs"%km_batch)
#构建mini batch kmeans算法
batch_size = 100 #采样集的大小
mbk = MiniBatchKMeans(init="k-means++",n_clusters=clusters,batch_size=batch_size,random_state=28)
t0 = time.time()
mbk.fit(X)
mbk_batch = time.time()-t0
print("Mini Batch K-Means算法模型训练消耗时间:%.4fs"%mbk_batch)
#预测结果
km_y_hat = k_means.predict(X)
mbk_y_hat = mbk.predict(X)
#获取聚类中心点并对其排序
k_means_cluster_center = k_means.cluster_centers_
mbk_cluster_center = mbk.cluster_centers_
print("K-Means算法聚类中心点:\n center=",k_means_cluster_center)
print("Mini Batch K-Means算法聚类中心点:\n center=",mbk_cluster_center)
order = pairwise_distances_argmin(k_means_cluster_center,mbk_cluster_center)
#画图
plt.figure(figsize=(12,6),facecolor="w")
plt.subplots_adjust(left=0.05,right=0.95,bottom=0.05,top=0.9)
cm = mpl.colors.ListedColormap(['#FFC2CC', '#C2FFCC', '#CCC2FF'])
cm2 = mpl.colors.ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
#子图1——原始数据
plt.subplot(221)
plt.scatter(X[:,0],X[:,1],c=Y,s=6,cmap=cm,edgecolors="none")
plt.title(u"原始数据分布图")
plt.xticks(())
plt.yticks(())
plt.grid(True)
#子图2:K-Means算法聚类结果图
plt.subplot(222)
plt.scatter(X[:,0], X[:,1], c=km_y_hat, s=6, cmap=cm,edgecolors='none')
plt.scatter(k_means_cluster_center[:,0], k_means_cluster_center[:,1],c=range(clusters),s=60,cmap=cm2,edgecolors='none')
plt.title(u'K-Means算法聚类结果图')
plt.xticks(())
plt.yticks(())
plt.text(-3.8, 3, 'train time: %.2fms' % (km_batch*1000))
plt.grid(True)
#子图三Mini Batch K-Means算法聚类结果图
plt.subplot(223)
plt.scatter(X[:,0], X[:,1], c=mbk_y_hat, s=6, cmap=cm,edgecolors='none')
plt.scatter(mbk_cluster_center[:,0], mbk_cluster_center[:,1],c=range(clusters),s=60,cmap=cm2,edgecolors='none')
plt.title(u'Mini Batch K-Means算法聚类结果图')
plt.xticks(())
plt.yticks(())
plt.text(-3.8, 3, 'train time: %.2fms' % (mbk_batch*1000))
plt.grid(True)
plt.savefig("kmean与mini batch kmeans 算法的比较.png")
plt.show()
#运行结果:
K-Means算法模型训练消耗时间:0.2260s
Mini Batch K-Means算法模型训练消耗时间:0.0230s
K-Means算法聚类中心点:
center= [[ 0.96091862 1.13741775]
[ 1.1979318 -1.02783007]
[-0.98673669 -1.09398768]]
Mini Batch K-Means算法聚类中心点:
center= [[ 1.34304199 -1.01641075]
[ 0.83760683 1.01229021]
[-0.92702179 -1.08205992]]
五、聚类算法的衡量指标
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author:ZhengzhengLiu
#聚类算法评估
import time
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.colors
from sklearn.cluster import KMeans,MiniBatchKMeans
from sklearn import metrics
from sklearn.metrics.pairwise import pairwise_distances_argmin
from sklearn.datasets.samples_generator import make_blobs
#解决中文显示问题
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
#初始化三个中心
centers = [[1,1],[-1,-1],[1,-1]]
clusters = len(centers) #聚类数目为3
#产生3000组二维数据样本,三个中心点,标准差是0.7
X,Y = make_blobs(n_samples=300,centers=centers,cluster_std=0.7,random_state=28)
#构建kmeans算法
k_means = KMeans(init="k-means++",n_clusters=clusters,random_state=28)
t0 = time.time()
k_means.fit(X) #模型训练
km_batch = time.time()-t0 #使用kmeans训练数据消耗的时间
print("K-Means算法模型训练消耗时间:%.4fs"%km_batch)
#构建mini batch kmeans算法
batch_size = 100 #采样集的大小
mbk = MiniBatchKMeans(init="k-means++",n_clusters=clusters,batch_size=batch_size,random_state=28)
t0 = time.time()
mbk.fit(X)
mbk_batch = time.time()-t0
print("Mini Batch K-Means算法模型训练消耗时间:%.4fs"%mbk_batch)
km_y_hat = k_means.labels_
mbkm_y_hat = mbk.labels_
k_means_cluster_centers = k_means.cluster_centers_
mbk_means_cluster_centers = mbk.cluster_centers_
print ("K-Means算法聚类中心点:\ncenter=", k_means_cluster_centers)
print ("Mini Batch K-Means算法聚类中心点:\ncenter=", mbk_means_cluster_centers)
order = pairwise_distances_argmin(k_means_cluster_centers,
mbk_means_cluster_centers)
#效果评估
### 效果评估
score_funcs = [
metrics.adjusted_rand_score, #ARI(调整兰德指数)
metrics.v_measure_score, #均一性与完整性的加权平均
metrics.adjusted_mutual_info_score, #AMI(调整互信息)
metrics.mutual_info_score, #互信息
]
## 2. 迭代对每个评估函数进行评估操作
for score_func in score_funcs:
t0 = time.time()
km_scores = score_func(Y, km_y_hat)
print("K-Means算法:%s评估函数计算结果值:%.5f;计算消耗时间:%0.3fs" % (score_func.__name__, km_scores, time.time() - t0))
t0 = time.time()
mbkm_scores = score_func(Y, mbkm_y_hat)
print("Mini Batch K-Means算法:%s评估函数计算结果值:%.5f;计算消耗时间:%0.3fs\n" % (score_func.__name__, mbkm_scores, time.time() - t0))
#运行结果:
K-Means算法模型训练消耗时间:0.6350s
Mini Batch K-Means算法模型训练消耗时间:0.0900s
K-Means算法聚类中心点:
center= [[ 0.96091862 1.13741775]
[ 1.1979318 -1.02783007]
[-0.98673669 -1.09398768]]
Mini Batch K-Means算法聚类中心点:
center= [[ 1.34304199 -1.01641075]
[ 0.83760683 1.01229021]
[-0.92702179 -1.08205992]]
K-Means算法:adjusted_rand_score评估函数计算结果值:0.72566;计算消耗时间:0.071s
Mini Batch K-Means算法:adjusted_rand_score评估函数计算结果值:0.69544;计算消耗时间:0.001s
K-Means算法:v_measure_score评估函数计算结果值:0.67529;计算消耗时间:0.004s
Mini Batch K-Means算法:v_measure_score评估函数计算结果值:0.65055;计算消耗时间:0.004s
K-Means算法:adjusted_mutual_info_score评估函数计算结果值:0.67263;计算消耗时间:0.006s
Mini Batch K-Means算法:adjusted_mutual_info_score评估函数计算结果值:0.64731;计算消耗时间:0.005s
K-Means算法:mutual_info_score评估函数计算结果值:0.74116;计算消耗时间:0.002s
Mini Batch K-Means算法:mutual_info_score评估函数计算结果值:0.71351;计算消耗时间:0.001s