代码下载

ios opengl绘制yuv opengl绘制函数_数据


#include "CELLWinApp.hpp"
#include <gl/GLU.h>
#include <assert.h>
#include <math.h>
#pragma comment(lib,"opengl32.lib")
#pragma comment(lib,"glu32.lib")
/**
*   该例子展示如何点,线,面等数据,
*   主要用到的OpenGL函数及定义如下
    GL_POINTS
    GL_LINES
    GL_LINE_STRIP
    GL_LINE_LOOP
    GL_TRIANGLES
    GL_TRIANGLE_STRIP
    GL_TRIANGLE_FAN
    GL_QUADS
    GL_QUAD_STRIP
    GL_POLYGON
    绘制函数:改函数是OpenGL系统定义的函数,一些基本的绘制可以使用,效率较高
    缺点是如果顶点数据不可随意组合:
    参数有以下:相信有经验的大牛们,一看就知道是啥了,但对新手,我还是做个简单的介绍    T = texture coord :纹理坐标,四维
    C = 颜色
    N = 法线
    V = 定点    V = vertex 
    2 = 元素的个数
    F = 数据的格式: float
    GL_V2F                            //!   数据是两个float,
    GL_V3F                            //!   数据是三个个float    C = COLOR
    4ub= 4个(r,g,b,a unsigned byte)
    V = vertex
    2f = 2 * float
    GL_C4UB_V2F                       
    GL_C4UB_V3F                       
    GL_C3F_V3F                        
    GL_N3F_V3F                        
    GL_C4F_N3F_V3F                    
    GL_T2F_V3F                        
    GL_T4F_V4F                        
    GL_T2F_C4UB_V3F                   
    GL_T2F_C3F_V3F                    
    GL_T2F_N3F_V3F                    
    GL_T2F_C4F_N3F_V3F                
    GL_T4F_C4F_N3F_V4F        glInterleavedArrays( );
    glDrawArrays( );
    gluPerspective,以及如何自己生成一个矩阵,替代gluPerspective函数
    同时加入键盘事件的处理,通过按'S'键切换绘制图元的类型
    为了在应用层中回去键盘事件,需要对之前的基类做再次改造
    将event函数声明成为虚函数,这样应用层可以进行重写。
    如果你对Windows事件消息不熟悉,那你要看书了
*
*/
/**
*   顶点结构声明
*/
struct Vertex
{
    unsigned char r, g, b, a;
    float x, y, z;
};Vertex g_points[] = 
{
    { 255,   0,   0, 255,  0.0f, 0.0f, 0.0f },
    {   0, 255,   0, 255,  0.5f, 0.0f, 0.0f },
    {   0,   0, 255, 255, -0.5f, 0.0f, 0.0f },
    { 255, 255,   0, 255,  0.0f,-0.5f, 0.0f },
    { 255,   0, 255, 255,  0.0f, 0.5f, 0.0f }
};Vertex g_lines[] = 
{
    { 255,   0,   0, 255, -1.0f, 0.0f, 0.0f },  // Line #1
    { 255,   0,   0, 255,  0.0f, 1.0f, 0.0f },    {   0, 255,   0, 255,  0.5f, 1.0f, 0.0f },  // Line #2
    {   0, 255,   0, 255,  0.5f,-1.0f, 0.0f },    {   0,   0, 255, 255,  1.0f, -0.5f, 0.0f }, // Line #3
    {   0,   0, 255, 255, -1.0f, -0.5f, 0.0f }
};Vertex g_lineStrip_and_lineLoop[] = 
{
    { 255,   0,   0, 255,  0.5f, 0.5f, 0.0f },
    {   0, 255,   0, 255,  1.0f, 0.0f, 0.0f },
    {   0,   0, 255, 255,  0.0f,-1.0f, 0.0f },
    { 255, 255,   0, 255, -1.0f, 0.0f, 0.0f },
    { 255,   0,   0, 255,  0.0f, 0.0f, 0.0f },
    { 255,   0, 255, 255,  0.0f, 1.0f, 0.0f }
};Vertex g_triangles[] =
{
    { 255,   0,   0, 255, -1.0f, 0.0f, 0.0f }, // Triangle #1
    {   0,   0, 255, 255,  1.0f, 0.0f, 0.0f },
    {   0, 255,   0, 255,  0.0f, 1.0f, 0.0f },    { 255, 255,   0, 255, -0.5f,-1.0f, 0.0f }, // Triangle #2
    { 255,   0,   0, 255,  0.5f,-1.0f, 0.0f },
    {   0, 255, 255, 255,  0.0f,-0.5f, 0.0f }
};Vertex g_triangleStrip[] = 
{
    { 255,   0,   0, 255, -2.0f, 0.0f, 0.0f },
    {   0,   0, 255, 255, -1.0f, 0.0f, 0.0f },	
    {   0, 255,   0, 255, -1.0f, 1.0f, 0.0f },
    { 255,   0, 255, 255,  0.0f, 0.0f, 0.0f },
    { 255, 255,   0, 255,  0.0f, 1.0f, 0.0f },
    { 255,   0,   0, 255,  1.0f, 0.0f, 0.0f },
    {   0, 255, 255, 255,  1.0f, 1.0f, 0.0f },
    {   0, 255,   0, 255,  2.0f, 1.0f, 0.0f }
};Vertex g_triangleFan[] = 
{
    { 255,   0,   0, 255,  0.0f,-1.0f, 0.0f },
    {   0, 255, 255, 255,  1.0f, 0.0f, 0.0f },
    { 255,   0, 255, 255,  0.5f, 0.5f, 0.0f },
    { 255, 255,   0, 255,  0.0f, 1.0f, 0.0f },
    {   0,   0, 255, 255, -0.5f, 0.5f, 0.0f },
    {   0, 255,   0, 255, -1.0f, 0.0f, 0.0f }
};Vertex g_quads[] =
{
    { 255,   0,   0, 255,  -0.5f,-0.5f, 0.0f },  // Quad #1
    {   0, 255,   0, 255,   0.5f,-0.5f, 0.0f },
    {   0,   0, 255, 255,   0.5f, 0.5f, 0.0f },
    { 255, 255,   0, 255,  -0.5f, 0.5f, 0.0f },    { 255,   0, 255, 255,  -1.5f, -1.0f, 0.0f }, // Quad #2
    {   0, 255, 255, 255,  -1.0f, -1.0f, 0.0f },
    { 255,   0,   0, 255,  -1.0f,  1.5f, 0.0f },
    {   0, 255,   0, 255,  -1.5f,  1.5f, 0.0f },    {   0,   0, 255, 255,  1.0f, -0.2f, 0.0f },  // Quad #3
    { 255, 255,   0, 255,  2.0f, -0.2f, 0.0f },
    {   0, 255, 255, 255,  2.0f,  0.2f, 0.0f },
    { 255,   0, 255, 255,  1.0f,  0.2f, 0.0f }
};Vertex g_quadStrip[] =
{
    { 255,   0,   0, 255,  -0.5f,-1.5f, 0.0f },
    {   0, 255,   0, 255,   0.5f,-1.5f, 0.0f },
    {   0,   0, 255, 255,  -0.2f,-0.5f, 0.0f },
    { 255, 255,   0, 255,   0.2f,-0.5f, 0.0f },
    { 255,   0, 255, 255,  -0.5f, 0.5f, 0.0f },
    {   0, 255, 255, 255,   0.5f, 0.5f, 0.0f },
    { 255,   0,   0, 255,  -0.4f, 1.5f, 0.0f },
    {   0, 255,   0, 255,   0.4f, 1.5f, 0.0f },
};Vertex g_polygon[] =
{
    { 255,   0,   0, 255,  -0.3f,-1.5f, 0.0f },
    {   0, 255,   0, 255,   0.3f,-1.5f, 0.0f },
    {   0,   0, 255, 255,   0.5f, 0.5f, 0.0f },
    { 255, 255,   0, 255,   0.0f, 1.5f, 0.0f },
    { 255,   0, 255, 255,  -0.5f, 0.5f, 0.0f }
};class   Tutorial2 :public  CELL::Graphy::CELLWinApp
{
public:
    Tutorial2(HINSTANCE hInstance)
        :CELL::Graphy::CELLWinApp(hInstance)
        ,_primitiveType(GL_POINTS)
    {
    }
    virtual void    render()
    {
        do 
        {
            glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);            /**
            *   指明,要操作的矩阵是模型矩阵
            */
            glMatrixMode( GL_MODELVIEW );
            glLoadIdentity();
            glTranslatef( 0.0f, 0.0f, -5.0f );            switch( _primitiveType )
            {
            case GL_POINTS:
                glInterleavedArrays( GL_C4UB_V3F, 0, g_points );
                glDrawArrays( GL_POINTS, 0, 5 );
                break;            case GL_LINES:
                glInterleavedArrays( GL_C4UB_V3F, 0, g_lines );
                glDrawArrays( GL_LINES, 0, 6 );
                break;            case GL_LINE_STRIP:
                glInterleavedArrays( GL_C4UB_V3F, 0, g_lineStrip_and_lineLoop );
                glDrawArrays( GL_LINE_STRIP, 0, 6 );
                break;            case GL_LINE_LOOP:
                glInterleavedArrays( GL_C4UB_V3F, 0, g_lineStrip_and_lineLoop );
                glDrawArrays( GL_LINE_LOOP, 0, 6 );
                break;            case GL_TRIANGLES:
                glInterleavedArrays( GL_C4UB_V3F, 0, g_triangles );
                glDrawArrays( GL_TRIANGLES, 0, 6 );
                break;            case GL_TRIANGLE_STRIP:
                glInterleavedArrays( GL_C4UB_V3F, 0, g_triangleStrip );
                glDrawArrays( GL_TRIANGLE_STRIP, 0, 8 );
                break;            case GL_TRIANGLE_FAN:
                glInterleavedArrays( GL_C4UB_V3F, 0, g_triangleFan );
                glDrawArrays( GL_TRIANGLE_FAN, 0, 6 );
                break;            case GL_QUADS:
                glInterleavedArrays( GL_C4UB_V3F, 0, g_quads );
                glDrawArrays( GL_QUADS, 0, 12 );
                break;            case GL_QUAD_STRIP:
                glInterleavedArrays( GL_C4UB_V3F, 0, g_quadStrip );
                glDrawArrays( GL_QUAD_STRIP, 0, 8 );
                break;            case GL_POLYGON:
                glInterleavedArrays( GL_C4UB_V3F, 0, g_polygon );
                glDrawArrays( GL_POLYGON, 0, 5 );
                break;            default: 
                break;
            }            SwapBuffers( _hDC );
        } while (false);
    }    /**
    *   生成投影矩阵
    *   后面为了重用性,我们会写一个专门的matrix类,完成矩阵的一系列擦做
    *   这个是很有必须要的,当你对Opengl了解的不断深入,你会发现,很多都是和数学有关的
    */
    void    perspective(float fovy,float aspect,float zNear,float zFar,float matrix[4][4])
    {
        assert(aspect != float(0));
        assert(zFar != zNear);
        #define PI 3.14159265358979323f            float rad       =   fovy * (PI / 180);
            float halfFovy  =   tan(rad / float(2));
            matrix[0][0]    =   float(1) / (aspect * halfFovy);
            matrix[1][1]    =   float(1) / (halfFovy);
            matrix[2][2]    =   -(zFar + zNear) / (zFar - zNear);
            matrix[2][3]    =   -float(1);
            matrix[3][2]    =   -(float(2) * zFar * zNear) / (zFar - zNear);
        #undef PI
    }
    virtual void    onInit()
    {
        /**
        *   调用父类的函数。
        */
        CELL::Graphy::CELLWinApp::onInit();
        /**
        *   设置Opengl的投影方式,改例子里面,我们使用正交投影
        *   OpenGL的投影方式有两种(我知道的):正交,和透视,有兴趣的可以google下
        *   这里采用的窗口坐标系,与Windows窗口坐标一直,左上角为 0,0,右下角为 _winWidth,_winHeight
        *   这种投影下绘制出来的物体没有三维感
        */
        //glOrtho(0,_winWidth,_winHeight,0,1,-1);
        //! 修改投影方式-透视投影,
        //! 指定我们要进行操作的矩阵,OpenGL是一个状态机,所以要操作那一个状态的时候,需要进行切换
        //! 下面的这句话就是切换到投影矩阵上
        //! gluPerspective细节实现,参照下面的网址:http://www.opengl.org/sdk/docs/man2/xhtml/gluPerspective.xml        glMatrixMode( GL_PROJECTION );
#if 0

        glLoadIdentity();
        gluPerspective( 45.0, (GLdouble)_winWidth / (GLdouble)_winHeight, 0.1, 100.0);        float mat[4][4];
        glGetFloatv(GL_PROJECTION_MATRIX,(float*)mat);#else
        //! 这里我们也可以自己按照Opengl的投影方式生成一个投影矩阵,
        //! 然后将投影矩阵给OpenGL
        GLfloat matrix[4][4]  =   
        {
            0,0,0,0,
            0,0,0,0,
            0,0,0,0,
            0,0,0,0
        };
        perspective(45.0f, (GLfloat)_winWidth / (GLfloat)_winHeight, 0.1f, 100.0f,matrix);
        glLoadMatrixf((float*)matrix);
#endif
        glClearColor(0,0,0,1);
    }    virtual int    events(unsigned msg, unsigned wParam, unsigned lParam)
    {
        switch(msg)
        {
        case WM_KEYDOWN:
            {
                if (wParam == 'S' ||wParam == 'S')
                {
                    _primitiveType  +=  1;
                    if (_primitiveType >=GL_POLYGON )
                    {
                        _primitiveType  =   0;
                    }
                }
            }
            break;
        }
        return  __super::events(msg,wParam,lParam);
    }
protected:
    unsigned    _primitiveType;
};int CALLBACK _tWinMain(
                       HINSTANCE hInstance, 
                       HINSTANCE hPrevInstance, 
                       LPTSTR lpCmdLine, 
                       int nShowCmd 
                       )
{    Tutorial2 winApp(hInstance);
    winApp.start(640,480);
    return  0;
}