代码下载
#include "CELLWinApp.hpp"
#include <gl/GLU.h>
#include <assert.h>
#include <math.h>
#pragma comment(lib,"opengl32.lib")
#pragma comment(lib,"glu32.lib")
/**
* 该例子展示如何点,线,面等数据,
* 主要用到的OpenGL函数及定义如下
GL_POINTS
GL_LINES
GL_LINE_STRIP
GL_LINE_LOOP
GL_TRIANGLES
GL_TRIANGLE_STRIP
GL_TRIANGLE_FAN
GL_QUADS
GL_QUAD_STRIP
GL_POLYGON
绘制函数:改函数是OpenGL系统定义的函数,一些基本的绘制可以使用,效率较高
缺点是如果顶点数据不可随意组合:
参数有以下:相信有经验的大牛们,一看就知道是啥了,但对新手,我还是做个简单的介绍 T = texture coord :纹理坐标,四维
C = 颜色
N = 法线
V = 定点 V = vertex
2 = 元素的个数
F = 数据的格式: float
GL_V2F //! 数据是两个float,
GL_V3F //! 数据是三个个float C = COLOR
4ub= 4个(r,g,b,a unsigned byte)
V = vertex
2f = 2 * float
GL_C4UB_V2F
GL_C4UB_V3F
GL_C3F_V3F
GL_N3F_V3F
GL_C4F_N3F_V3F
GL_T2F_V3F
GL_T4F_V4F
GL_T2F_C4UB_V3F
GL_T2F_C3F_V3F
GL_T2F_N3F_V3F
GL_T2F_C4F_N3F_V3F
GL_T4F_C4F_N3F_V4F glInterleavedArrays( );
glDrawArrays( );
gluPerspective,以及如何自己生成一个矩阵,替代gluPerspective函数
同时加入键盘事件的处理,通过按'S'键切换绘制图元的类型
为了在应用层中回去键盘事件,需要对之前的基类做再次改造
将event函数声明成为虚函数,这样应用层可以进行重写。
如果你对Windows事件消息不熟悉,那你要看书了
*
*/
/**
* 顶点结构声明
*/
struct Vertex
{
unsigned char r, g, b, a;
float x, y, z;
};Vertex g_points[] =
{
{ 255, 0, 0, 255, 0.0f, 0.0f, 0.0f },
{ 0, 255, 0, 255, 0.5f, 0.0f, 0.0f },
{ 0, 0, 255, 255, -0.5f, 0.0f, 0.0f },
{ 255, 255, 0, 255, 0.0f,-0.5f, 0.0f },
{ 255, 0, 255, 255, 0.0f, 0.5f, 0.0f }
};Vertex g_lines[] =
{
{ 255, 0, 0, 255, -1.0f, 0.0f, 0.0f }, // Line #1
{ 255, 0, 0, 255, 0.0f, 1.0f, 0.0f }, { 0, 255, 0, 255, 0.5f, 1.0f, 0.0f }, // Line #2
{ 0, 255, 0, 255, 0.5f,-1.0f, 0.0f }, { 0, 0, 255, 255, 1.0f, -0.5f, 0.0f }, // Line #3
{ 0, 0, 255, 255, -1.0f, -0.5f, 0.0f }
};Vertex g_lineStrip_and_lineLoop[] =
{
{ 255, 0, 0, 255, 0.5f, 0.5f, 0.0f },
{ 0, 255, 0, 255, 1.0f, 0.0f, 0.0f },
{ 0, 0, 255, 255, 0.0f,-1.0f, 0.0f },
{ 255, 255, 0, 255, -1.0f, 0.0f, 0.0f },
{ 255, 0, 0, 255, 0.0f, 0.0f, 0.0f },
{ 255, 0, 255, 255, 0.0f, 1.0f, 0.0f }
};Vertex g_triangles[] =
{
{ 255, 0, 0, 255, -1.0f, 0.0f, 0.0f }, // Triangle #1
{ 0, 0, 255, 255, 1.0f, 0.0f, 0.0f },
{ 0, 255, 0, 255, 0.0f, 1.0f, 0.0f }, { 255, 255, 0, 255, -0.5f,-1.0f, 0.0f }, // Triangle #2
{ 255, 0, 0, 255, 0.5f,-1.0f, 0.0f },
{ 0, 255, 255, 255, 0.0f,-0.5f, 0.0f }
};Vertex g_triangleStrip[] =
{
{ 255, 0, 0, 255, -2.0f, 0.0f, 0.0f },
{ 0, 0, 255, 255, -1.0f, 0.0f, 0.0f },
{ 0, 255, 0, 255, -1.0f, 1.0f, 0.0f },
{ 255, 0, 255, 255, 0.0f, 0.0f, 0.0f },
{ 255, 255, 0, 255, 0.0f, 1.0f, 0.0f },
{ 255, 0, 0, 255, 1.0f, 0.0f, 0.0f },
{ 0, 255, 255, 255, 1.0f, 1.0f, 0.0f },
{ 0, 255, 0, 255, 2.0f, 1.0f, 0.0f }
};Vertex g_triangleFan[] =
{
{ 255, 0, 0, 255, 0.0f,-1.0f, 0.0f },
{ 0, 255, 255, 255, 1.0f, 0.0f, 0.0f },
{ 255, 0, 255, 255, 0.5f, 0.5f, 0.0f },
{ 255, 255, 0, 255, 0.0f, 1.0f, 0.0f },
{ 0, 0, 255, 255, -0.5f, 0.5f, 0.0f },
{ 0, 255, 0, 255, -1.0f, 0.0f, 0.0f }
};Vertex g_quads[] =
{
{ 255, 0, 0, 255, -0.5f,-0.5f, 0.0f }, // Quad #1
{ 0, 255, 0, 255, 0.5f,-0.5f, 0.0f },
{ 0, 0, 255, 255, 0.5f, 0.5f, 0.0f },
{ 255, 255, 0, 255, -0.5f, 0.5f, 0.0f }, { 255, 0, 255, 255, -1.5f, -1.0f, 0.0f }, // Quad #2
{ 0, 255, 255, 255, -1.0f, -1.0f, 0.0f },
{ 255, 0, 0, 255, -1.0f, 1.5f, 0.0f },
{ 0, 255, 0, 255, -1.5f, 1.5f, 0.0f }, { 0, 0, 255, 255, 1.0f, -0.2f, 0.0f }, // Quad #3
{ 255, 255, 0, 255, 2.0f, -0.2f, 0.0f },
{ 0, 255, 255, 255, 2.0f, 0.2f, 0.0f },
{ 255, 0, 255, 255, 1.0f, 0.2f, 0.0f }
};Vertex g_quadStrip[] =
{
{ 255, 0, 0, 255, -0.5f,-1.5f, 0.0f },
{ 0, 255, 0, 255, 0.5f,-1.5f, 0.0f },
{ 0, 0, 255, 255, -0.2f,-0.5f, 0.0f },
{ 255, 255, 0, 255, 0.2f,-0.5f, 0.0f },
{ 255, 0, 255, 255, -0.5f, 0.5f, 0.0f },
{ 0, 255, 255, 255, 0.5f, 0.5f, 0.0f },
{ 255, 0, 0, 255, -0.4f, 1.5f, 0.0f },
{ 0, 255, 0, 255, 0.4f, 1.5f, 0.0f },
};Vertex g_polygon[] =
{
{ 255, 0, 0, 255, -0.3f,-1.5f, 0.0f },
{ 0, 255, 0, 255, 0.3f,-1.5f, 0.0f },
{ 0, 0, 255, 255, 0.5f, 0.5f, 0.0f },
{ 255, 255, 0, 255, 0.0f, 1.5f, 0.0f },
{ 255, 0, 255, 255, -0.5f, 0.5f, 0.0f }
};class Tutorial2 :public CELL::Graphy::CELLWinApp
{
public:
Tutorial2(HINSTANCE hInstance)
:CELL::Graphy::CELLWinApp(hInstance)
,_primitiveType(GL_POINTS)
{
}
virtual void render()
{
do
{
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); /**
* 指明,要操作的矩阵是模型矩阵
*/
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
glTranslatef( 0.0f, 0.0f, -5.0f ); switch( _primitiveType )
{
case GL_POINTS:
glInterleavedArrays( GL_C4UB_V3F, 0, g_points );
glDrawArrays( GL_POINTS, 0, 5 );
break; case GL_LINES:
glInterleavedArrays( GL_C4UB_V3F, 0, g_lines );
glDrawArrays( GL_LINES, 0, 6 );
break; case GL_LINE_STRIP:
glInterleavedArrays( GL_C4UB_V3F, 0, g_lineStrip_and_lineLoop );
glDrawArrays( GL_LINE_STRIP, 0, 6 );
break; case GL_LINE_LOOP:
glInterleavedArrays( GL_C4UB_V3F, 0, g_lineStrip_and_lineLoop );
glDrawArrays( GL_LINE_LOOP, 0, 6 );
break; case GL_TRIANGLES:
glInterleavedArrays( GL_C4UB_V3F, 0, g_triangles );
glDrawArrays( GL_TRIANGLES, 0, 6 );
break; case GL_TRIANGLE_STRIP:
glInterleavedArrays( GL_C4UB_V3F, 0, g_triangleStrip );
glDrawArrays( GL_TRIANGLE_STRIP, 0, 8 );
break; case GL_TRIANGLE_FAN:
glInterleavedArrays( GL_C4UB_V3F, 0, g_triangleFan );
glDrawArrays( GL_TRIANGLE_FAN, 0, 6 );
break; case GL_QUADS:
glInterleavedArrays( GL_C4UB_V3F, 0, g_quads );
glDrawArrays( GL_QUADS, 0, 12 );
break; case GL_QUAD_STRIP:
glInterleavedArrays( GL_C4UB_V3F, 0, g_quadStrip );
glDrawArrays( GL_QUAD_STRIP, 0, 8 );
break; case GL_POLYGON:
glInterleavedArrays( GL_C4UB_V3F, 0, g_polygon );
glDrawArrays( GL_POLYGON, 0, 5 );
break; default:
break;
} SwapBuffers( _hDC );
} while (false);
} /**
* 生成投影矩阵
* 后面为了重用性,我们会写一个专门的matrix类,完成矩阵的一系列擦做
* 这个是很有必须要的,当你对Opengl了解的不断深入,你会发现,很多都是和数学有关的
*/
void perspective(float fovy,float aspect,float zNear,float zFar,float matrix[4][4])
{
assert(aspect != float(0));
assert(zFar != zNear);
#define PI 3.14159265358979323f float rad = fovy * (PI / 180);
float halfFovy = tan(rad / float(2));
matrix[0][0] = float(1) / (aspect * halfFovy);
matrix[1][1] = float(1) / (halfFovy);
matrix[2][2] = -(zFar + zNear) / (zFar - zNear);
matrix[2][3] = -float(1);
matrix[3][2] = -(float(2) * zFar * zNear) / (zFar - zNear);
#undef PI
}
virtual void onInit()
{
/**
* 调用父类的函数。
*/
CELL::Graphy::CELLWinApp::onInit();
/**
* 设置Opengl的投影方式,改例子里面,我们使用正交投影
* OpenGL的投影方式有两种(我知道的):正交,和透视,有兴趣的可以google下
* 这里采用的窗口坐标系,与Windows窗口坐标一直,左上角为 0,0,右下角为 _winWidth,_winHeight
* 这种投影下绘制出来的物体没有三维感
*/
//glOrtho(0,_winWidth,_winHeight,0,1,-1);
//! 修改投影方式-透视投影,
//! 指定我们要进行操作的矩阵,OpenGL是一个状态机,所以要操作那一个状态的时候,需要进行切换
//! 下面的这句话就是切换到投影矩阵上
//! gluPerspective细节实现,参照下面的网址:http://www.opengl.org/sdk/docs/man2/xhtml/gluPerspective.xml glMatrixMode( GL_PROJECTION );
#if 0
glLoadIdentity();
gluPerspective( 45.0, (GLdouble)_winWidth / (GLdouble)_winHeight, 0.1, 100.0); float mat[4][4];
glGetFloatv(GL_PROJECTION_MATRIX,(float*)mat);#else
//! 这里我们也可以自己按照Opengl的投影方式生成一个投影矩阵,
//! 然后将投影矩阵给OpenGL
GLfloat matrix[4][4] =
{
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0
};
perspective(45.0f, (GLfloat)_winWidth / (GLfloat)_winHeight, 0.1f, 100.0f,matrix);
glLoadMatrixf((float*)matrix);
#endif
glClearColor(0,0,0,1);
} virtual int events(unsigned msg, unsigned wParam, unsigned lParam)
{
switch(msg)
{
case WM_KEYDOWN:
{
if (wParam == 'S' ||wParam == 'S')
{
_primitiveType += 1;
if (_primitiveType >=GL_POLYGON )
{
_primitiveType = 0;
}
}
}
break;
}
return __super::events(msg,wParam,lParam);
}
protected:
unsigned _primitiveType;
};int CALLBACK _tWinMain(
HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPTSTR lpCmdLine,
int nShowCmd
)
{ Tutorial2 winApp(hInstance);
winApp.start(640,480);
return 0;
}