抛出问题

python小数加减_浮点数

输出:

python小数加减_python小数加减_02

why?奇进偶舍

round到底出了什么问题?

在Python 3里面,round这个内置的函数到底有什么问题。

网上有人说,因为在计算机里面,小数是不精确的,例如1.115在计算机中实际上是1.1149999999999999911182,所以当你对这个小数精确到小数点后两位的时候,实际上小数点后第三位是4,所以四舍五入,因此结果为1.11

这种说法,对了一半。

因为并不是所有的小数在计算机中都是不精确的。例如0.125这个小数在计算机中就是精确的,它就是0.125,没有省略后面的值,没有近似,它确确实实就是0.125

但是如果我们在Python中把0.125精确到小数点后两位,那么它的就会变成0.12


>>> round(0.125, 2)
0.12


为什么在这里四舍了?

还有更奇怪的,另一个在计算机里面能够精确表示的小数0.375,我们来看看精确到小数点后两位是多少:


>>> round(0.375, 2)
0.38


为什么这里又五入了?

因为在Python 3里面,round对小数的精确度采用了四舍六入五成双的方式。

如果你写过大学物理的实验报告,那么你应该会记得老师讲过,直接使用四舍五入,最后的结果可能会偏高。所以需要使用奇进偶舍的处理方法。

例如对于一个小数a.bcd,需要精确到小数点后两位,那么就要看小数点后第三位:

  1. 如果d小于5,直接舍去
  2. 如果d大于5,直接进位
  3. 如果d等于5:
  1. d后面没有数据,且c为偶数,那么不进位,保留c
  2. d后面没有数据,且c为奇数,那么进位,c变成(c + 1)
  3. 如果d后面还有非0数字,例如实际上小数为a.bcdef,此时一定要进位,c变成(c + 1)

关于奇进偶舍,有兴趣的同学可以在维基百科搜索这两个词条:数值修约奇进偶舍

所以,round给出的结果如果与你设想的不一样,那么你需要考虑两个原因:

  1. 你的这个小数在计算机中能不能被精确储存?如果不能,那么它可能并没有达到四舍五入的标准,例如1.115,它的小数点后第三位实际上是4,当然会被舍去。
  2. 如果你的这个小数在计算机中能被精确表示,那么,round采用的进位机制是奇进偶舍,所以这取决于你要保留的那一位,它是奇数还是偶数,以及它的下一位后面还有没有数据。

如何正确进行四舍五入

如果要实现我们数学上的四舍五入,那么就需要使用decimal模块。

如何正确使用decimal模块呢?

不要担心看不懂英文,Python已经推出了官方中文文档(有些函数的使用方法还没有翻译完成)。


官方文档给出了具体的写法:


>>>Decimal('1.41421356').quantize(Decimal('1.000'))
Decimal('1.414')


那么我们来测试一下,0.1250.375分别保留两位小数是多少:


>>> from decimal import Decimal
>>> Decimal('0.125').quantize(Decimal('0.00'))
Decimal('0.12')
>>> Decimal('0.375').quantize(Decimal('0.00'))
Decimal('0.38')


怎么结果和round一样?我们来看看文档中quantize的函数原型和文档说明:

python小数加减_python小数加减_03

 

这里提到了可以通过指定rounding参数来确定进位方式。如果没有指定rounding参数,那么默认使用上下文提供的进位方式。

现在我们来查看一下默认上下文中的进位方式是什么:


>>> from decimal import getcontext
>>> getcontext().rounding
'ROUND_HALF_EVEN'


如下图所示:

 

python小数加减_Python_04

ROUND_HALF_EVEN实际上就是奇进偶舍!如果要指定真正的四舍五入,那么我们需要在quantize中指定进位方式为ROUND_HALF_UP


>>> from decimal import Decimal, ROUND_HALF_UP
>>> Decimal('0.375').quantize(Decimal('0.00'), rounding=ROUND_HALF_UP)
Decimal('0.38')
>>> Decimal('0.125').quantize(Decimal('0.00'), rounding=ROUND_HALF_UP)
Decimal('0.13')


现在看起来一切都正常了。

那么会不会有人进一步追问一下,如果Decimal接收的参数不是字符串,而是浮点数会怎么样呢?

来实验一下:

>>> Decimal(0.375).quantize(Decimal('0.00'), rounding=ROUND_HALF_UP)
Decimal('0.38')
>>> Decimal(0.125).quantize(Decimal('0.00'), rounding=ROUND_HALF_UP)
Decimal('0.13')
 
那是不是说明,在Decimal的第一个参数,可以直接传浮点数呢?
我们换一个数来测试一下:
 
>>> Decimal(11.245).quantize(Decimal('0.00'), rounding=ROUND_HALF_UP)
Decimal('11.24')
>>> Decimal('11.245').quantize(Decimal('0.00'), rounding=ROUND_HALF_UP)
Decimal('11.25')


为什么浮点数11.245和字符串'11.245',传进去以后,结果不一样?

我们继续在文档在寻找答案。

python小数加减_python小数加减_05

 

官方文档已经很清楚地说明了,如果你传入的参数为浮点数,并且这个浮点值在计算机里面不能被精确存储,那么它会先被转换为一个不精确的二进制值,然后再把这个不精确的二进制值转换为等效的十进制值

对于不能精确表示的小数,当你传入的时候,Python在拿到这个数前,这个数就已经被转成了一个不精确的数了。所以你虽然参数传入的是11.245,但是Python拿到的实际上是11.244999999999...

但是如果你传入的是字符串'11.245',那么Python拿到它的时候,就能知道这是11.245,不会提前被转换为一个不精确的值,所以,建议给Decimal的第一个参数传入字符串型的浮点数,而不是直接写浮点数。

总结,如果想实现精确的四舍五入,代码应该这样写:


from decimal import Decimal, ROUND_HALF_UP

origin_num = Decimal('11.245')
answer_num = origin_num.quantize(Decimal('0.00'), rounding=ROUND_HALF_UP)
print(answer_num)


运行效果如下图所示:

 

python小数加减_浮点数_06

特别注意,一旦要做精确计算,那么就不应该再单独使用浮点数,而是应该总是使用Decimal('浮点数')。否则,当你赋值的时候,精度已经被丢失了,建议全程使用Decimal举例:


a = Decimal('0.1')
b = Decimal('0.2')
c = a + b
print(c)


最后附上python中的舍入模式

python小数加减_四舍五入_07