NLP 神经网络

2013 年和 2014 年是 NLP 问题开始引入神经网络模型的时期。使用最广泛的三种主要的神经网络是:循环神经网络、卷积神经网络和递归神经网络。

循环神经网络(RNNs) 循环神经网络是处理 NLP 中普遍存在的动态输入序列的一个最佳的技术方案。Vanilla RNNs (Elman,1990)很快被经典的长-短期记忆网络(Hochreiter & Schmidhuber,1997)所取代,它被证明对消失和爆炸梯度问题更有弹性。在 2013 年之前,RNN 仍被认为很难训练;Ilya Sutskever 的博士论文为改变这种现状提供了一个关键性的例子。下面的图对 LSTM 单元进行了可视化显示。双向 LSTM(Graves等,2013)通常用于处理左右两边的上下文。

NLP领域图神经网络应用 nlp神经网络模型_神经网络

卷积神经网络(CNNs) 卷积神经网络本来是广泛应用于计算机视觉领域的技术,现在也开始应用于语言(Kalchbrenner等,2014;Kim等,2014)。文本的卷积神经网络只在两个维度上工作,其中滤波器(卷积核)只需要沿着时间维度移动。下面的图显示了NLP中使用的典型 CNN。

NLP领域图神经网络应用 nlp神经网络模型_卷积神经网络_02

卷积神经网络的一个优点是它们比 RNN 更可并行化,因为其在每个时间步长的状态只依赖于本地上下文(通过卷积运算),而不是像 RNN 那样依赖过去所有的状态。使用膨胀卷积,可以扩大 CNN 的感受野,使网络有能力捕获更长的上下文(Kalchbrenner等,2016)。CNN 和 LSTM 可以组合和叠加(Wang等,2016),卷积也可以用来加速 LSTM(Bradbury等, 2017)。递归神经网络 RNN 和 CNN 都将语言视为一个序列。然而,从语言学的角度来看,语言本质上是层次化的:单词被组合成高阶短语和从句,这些短语和从句本身可以根据一组生产规则递归地组合。将句子视为树而不是序列的语言学启发思想产生了递归神经网络(Socher 等人, 2013),如下图所示

NLP领域图神经网络应用 nlp神经网络模型_神经网络_03

递归神经网络从下到上构建序列的表示,这一点不同于从左到右或从右到左处理句子的 RNN。在树的每个节点上,通过组合子节点的结果来计算新的结果。由于树也可以被视为在 RNN 上强加不同的处理顺序,所以 LSTM 自然地也被扩展到树上(Tai等,2015)。

RNN 和 LSTM 可以扩展到使用层次结构。单词嵌入不仅可以在本地学习,还可以在语法语境中学习(Levy & Goldberg等,2014);语言模型可以基于句法堆栈生成单词(Dyer等,2016);图卷积神经网络可以基于树结构运行(Bastings等,2017)。